• Title/Summary/Keyword: value prediction

Search Result 2,422, Processing Time 0.026 seconds

Application of Near Infrared Spectroscopy for Nondestructive Evaluation of Color Degree of Apple Fruit (사과 착색도의 비파괴측정을 위한 근적외분광분석법의 응용)

  • Sohn, Mi-Ryeong;Cho, Rae-Kwang
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.155-159
    • /
    • 2000
  • Apple fruit grading is largely dependant on skin color degree. This work reports about the possibility of nondestructive assessment of apple fruit color using infrared(NIR) reflectance spectroscopy. NIR spectra of apple fruit were collected in wavelength range of 1100~2500nm using an InfraAlyzer 500C(Bran+Luebbe). Calibration as calculated by the standard analysis procedures MLR(multiple linear regression) and stepwise, was performed by allowing the IDAS software to select the best regression equations using raw spectra of sample. Color degree of apple skin was expressed as 2 factors, anthocyanin content by purification and a-value by colorimeter. A total of 90 fruits was used for the calibration set(54) and prediction set(36). For determining a-value, the calibration model composed 6 wavelengths(2076, 2120, 2276, 2488, 2072 and 1492nm) provided the highest accuracy : correlation coefficient is 0.913 and standard error of prediction is 4.94. But, the accuracy of prediction result for anthocyanin content determining was rather low(R of 0.761).

  • PDF

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

Short-term Wind Power Prediction Based on Empirical Mode Decomposition and Improved Extreme Learning Machine

  • Tian, Zhongda;Ren, Yi;Wang, Gang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1841-1851
    • /
    • 2018
  • For the safe and stable operation of the power system, accurate wind power prediction is of great significance. A wind power prediction method based on empirical mode decomposition and improved extreme learning machine is proposed in this paper. Firstly, wind power time series is decomposed into several components with different frequency by empirical mode decomposition, which can reduce the non-stationary of time series. The components after decomposing remove the long correlation and promote the different local characteristics of original wind power time series. Secondly, an improved extreme learning machine prediction model is introduced to overcome the sample data updating disadvantages of standard extreme learning machine. Different improved extreme learning machine prediction model of each component is established. Finally, the prediction value of each component is superimposed to obtain the final result. Compared with other prediction models, the simulation results demonstrate that the proposed prediction method has better prediction accuracy for wind power.

A Study on the Performance Prediction and Evaluation of Scale Down Noise Reducing Device on the Top of Noise Barrier (축소모형 방음벽 상단장치의 성능예측 및 평가에 관한 연구)

  • Yoon, Je-Won;Kim, Young-Chan;Jang, Kang-Seok;Hong, Byung-Kook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2844-2851
    • /
    • 2011
  • The purpose of this study is to set up an acoustic prediction technique and to perform the IL test of scale down noise reducing device for the development of the noise reducing device as the development of 400km/h class high speed train. First of all, the IL prediction of noise reducing device was performed with the 2D BEM method. And the noise test of scale down noise reducing device in anechoic chamber was performed for the verification of acoustic prediction technique and IL performance evaluation. As the results, the acoustic prediction technique for the development of noise reducing device was verified because the averaged IL difference between prediction and test is in 2dB(A). And the measured IL value of noise reducing device is less than 2dB(A), and additional IL with polyester absorption material is increased about 0.5dB(A).

  • PDF

DNA methylation-based age prediction from various tissues and body fluids

  • Jung, Sang-Eun;Shin, Kyoung-Jin;Lee, Hwan Young
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.546-553
    • /
    • 2017
  • Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field.

On the Study of Perfect Coverage for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1151-1160
    • /
    • 2006
  • The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity. In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.

  • PDF

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

The Accuracy of Prediction Models in Burn Patients (화상환자에서 사망예측모델의 성능 평가에 관한 연구)

  • Woo, Jaeyeon;Kym, Dohern
    • Journal of the Korean Burn Society
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the accuracy of four prediction models in adult burn patients. Methods: This retrospective study was conducted on 696 adult burn patients who were treated at burn intensive care unit (BICU) of Hallym University Hangang Sacred Heart Hospital from January 2017 to December 2019. The models are ABSI, APACHE IV, rBaux and Hangang score. Results: The discrimination of each prediction model was analyzed as AUC of ROC curve. AUC value was the highest with Hangang score of 0.931 (0.908~0.954), followed by rBaux 0.896 (0.867~0.924), ABSI 0.883 (0.853~0.913) and APACHE IV 0.851 (0.818~0.884). Conclusion: The results of evaluating the accuracy of the four models, Hangang score showed the highest prediction. But it is necessary to apply the appropriate prediction model according to characteristics of the burn center.

Consolidation Analysis of Vertical Drain Considering Artesian Pressure (피압수압을 고려한 연직배수공법의 압밀해석)

  • 김상규;김호일;홍병만;김현태
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.62-70
    • /
    • 1999
  • Artesian pressure exists in Yangsan site, the maximum value of which has been measured as high as 5 t/m$^2$. This paper deals with the prediction of consolidation settlement for the site with artesian pressure. The consolidation settlement at the site has been accelerated using vertical band drains. Since the artesian pressure gives lower effective stress than a static condition, its effect should be considered in the settlement prediction. This case study shows that the prediction of settlement and pore pressure dissipation agrees well with the measurements, when considering the artesian effect.

  • PDF

Improved Algorithm for User Based Recommender System

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.717-726
    • /
    • 2006
  • This study is to investigate the MAE of prediction value by collaborative filtering algorithm originated by GroupLens and improved algorithm. To decrease the MAE on the collaborative recommender system on user based, this research proposes the improved algorithm, which reduces the possibility of over estimation of active user's preference mean collaboratively using other user’s preference mean. The result shows the MAE of prediction by improved algorithm is better than original algorithm, so the active user's preference mean used in prediction formula is possibly over estimated.

  • PDF