In the conventional fuzzy system reliability analysis, the reliabilities of the fuzzy systems and the components of fuzzy systems are represented by real values between zero and one, fuzzy numbers, vague sets, interval valued fuzzy sets, etc. This paper propose a method to represent and analyze the reliabilities of the fuzzy systems based on the internal valued vague sets defined in the universe of discourse [0, 1]. In the interval valued vague sets, the upper bounds and the lower bounds of the conventional vague sets are represented as the intervals, therefore it can allow the reliabilities of a fuzzy system to represent and analyze in a more flexible manner.
본 논문에서는 구간값 모호집합 사이의 유사척도를 제안한다. 구간값 모호집합에서는 모호집합의 상한과 하한을 각각 구간값 퍼지집합의 구간으로 표현한다. 제안한 유사척도는 구간값 모호집합 사이의 유사척도를 평가하기 위해 기하학적 거리와 구간값 모호집합 사이의 중심점 개념을 결합한다. 우리는 제안한 유사척도에 대한 세 가지 속성도 증명한다. 제안한 방법은 구간값 모호집합 사이의 유사정도를 측정하는 유용한 방법을 제공한다.
퍼지시스템의 신뢰도를 분석하기 위해서 기존의 연구에서는 퍼지시스템의 구성요소의 신뢰도를 0과 1사이의 실수, 퍼지숫자, 신용구간, 모호집합, 구간값 퍼지집합 등으로 표현하였다. 본 논문에서 우리는 전체집합 [0, 1]에서 정의되는 구간값 모호집합을 기반으로 퍼지시스템의 신뢰도를 표현하고 분석하는 방법을 제안한다. 구간값 모호집합에서는 기존 모호집합[12, 14]의 상한과 하한을 각각 구간으로 표현한다. 그러므로 퍼지시스템의 신뢰도를 더 유연한 방법으로 표현하고 분석하는 것을 가능하게 한다. 제안한 방법은 Kumar[14]가 언급한 복잡한 퍼지 사다리꼴숫자 연간보다는 퍼지 삼각숫자의 간단한 산술연산을 사용하기 때문에 제안된 방법의 실행속도는 기존의 방법보다 실행이 더 빠르다.
규칙기반시스템에서 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 술어의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 술어의 확신도를 모호집합에 기반을 둔 0과 1사이의 모호숫자와 같은 구간으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지추론을 하는 것이 가능하게 된다[18]. 우리는 모호집합 추론을 자동으로 실행하는 효율적인 알고리즘을 제안하였다. 이 모호집합 추론 알고리즘은 규칙기반시스템이 더 유연하고 효율적인 추론을 실행하는 것을 허용한다.
기존 연구에서 퍼지시스템의 신뢰도는 0과 1사이의 실수, 퍼지숫자, 신용구간 등으로 표현하고 분석한다. 본 논문에서, 우리는 퍼지시스템의 가중 구성요소의 신뢰도와 가중 구성요소의 중요도를 반영하는 가중값을 전체집합 [0, 1]에서 정의되는 모호집합으로 표현하고 분석하는 방법을 제안한다. 모호집합은 참 소속함수와 거짓 소속함수로 구성된 구간으로 표현된다. 따라서 모호집합은 퍼지시스템의 신뢰도와 가중값를 더 유연한 방법으로 표현하는 것을 가능하게 한다. 제안된 방법은 퍼지시스템내의 가중 구성요소의 가중값을 고려하므로, 제안한 방법의 신뢰도분석은 기존의 방법들 보다 더 유연하고 효과적이다.
Interval valued intuitionistic fuzzy sets (IVIFSs) is widely used to model uncertainty, imprecise, incomplete and vague information. In this paper, newly defined modal operators over an extensional generalized interval valued intuitionistic fuzzy sets ($GIVIFS_Bs$) are proposed. Some of the basic properties of the new operators are discussed and few theorems were proved. The actual contribution in this paper is to discuss ten operators on $GIVIFS_Bs$.
International Journal of Fuzzy Logic and Intelligent Systems
/
제10권4호
/
pp.259-262
/
2010
Study about fuzzy entropy and similarity measure on intuitionistic fuzzy sets (IFSs) were proposed, and analyzed. Unlike fuzzy set, IFSs contains uncertainty named hesistancy, which is contained in fuzzy membership function itself. Hence, designing fuzzy entropy is not easy because of ununified entropy definition. By considering different fuzzy entropy definitions, fuzzy entropy is designed and discussed their relation. Similarity measure was also presented and verified its usefulness to evaluate degree of similarity.
Zadeh에 의하여 소개된 퍼지 집합은 소속 함수를 이용하여 애매한 정보처리 및 추론을 가능토록 한 개념이다 Rough 집합의 개념은 Pawlak에 의하여 소개 되었으며.식별 곤란한 데이터의 분류, 축소 및 근사추론을 가능토록 한다. Pawlakl은 퍼지 집합과 Hough 집합을 서로 다른 개념으로 비교하여 서로 결합할 수 없는 것으로 정의하였다. 본 논문의 목적은 Pawlak의 정의와는 달리 퍼지 집합의 소속 함수를 Rough 집합에 적용함으로써 퍼지 집합과 Rough집합을 결합한 퍼지-rough집합의 개념을 정립하기 위한 것이다.
A number of studies for corporate bond rating classification problems have demonstrated that artificial intelligence approaches such as Case-based reasoning (CBR) can be alternative methodologies to statistical techniques. CBR is a problem solving technique in that the case specific knowledge of past experience is utilized to find a most similar solution to the new problems. To build a successful CBR system to deal with human information processing, the representation of knowledge of each attribute is an important key factor We propose a hybrid approach of using fuzzy sets that describe the approximate phenomena of the real world because it handles inexact knowledge represented by common linguistic terms in a similar way as human reasoning compared to the other existing techniques. Integration of fuzzy sets with CBR is important to develop effective methods for dealing with vague and incomplete knowledge to statistical represent using membership value of fuzzy sets in CBR.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.