• Title/Summary/Keyword: vacuum sensitivity

Search Result 177, Processing Time 0.033 seconds

Effect of Intermediate Metal on the Methanol Gas Sensitivity of ITO Thin Films (층간금속층에 따른 ITO 박막의 메탄올 검출민감도 개선 효과)

  • Lee, H.M.;Heo, S.B.;Kong, Y.M.;Kim, Dae-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.195-199
    • /
    • 2011
  • ITO thin films and gold (Au), copper (Cu) and nickel (Ni) intermediate ITO multilayer (ITO/Au/ITO, ITO/Cu/ITO, ITO/Ni/ITO) films were deposited on glass substrates with a reactive radio frequency and direct current magnetron sputtering system and then the effect of intermediate metal layer and annealing temperature on the methanol gas sensitivity of ITO films were investigated. Although both ITO and ITO/metal/ITO (IMI) film sensors have the same total thickness of 100 nm, IMI sensors have a sandwich structure of ITO 50 nm/metal 10 nm/ITO 40 nm. The change in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm was measured at room temperature. The IAI film sensors showed the higher sensitivity than the other sensors. Finally, it is concluded that the ITO 50/Au 10/ITO 40 nm film sensors hasthe potential to be used as improved methanol gas sensor.

Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity

  • Je, Chang Han;Choi, Chang Auck;Lee, Sung Q;Yang, Woo Seok
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.685-694
    • /
    • 2016
  • A surface micromachined piezoresistive pressure sensor with a novel internal substrate vacuum cavity was developed. The proposed internal substrate vacuum cavity is formed by selectively etching the silicon substrate under the sensing diaphragm. For the proposed cavity, a new fabrication process including a cavity side-wall formation, dry isotropic cavity etching, and cavity vacuum sealing was developed that is fully CMOS-compatible, low in cost, and reliable. The sensitivity of the fabricated pressure sensors is 2.80 mV/V/bar and 3.46 mV/V/bar for a rectangular and circular diaphragm, respectively, and the linearity is 0.39% and 0.16% for these two diaphragms. The temperature coefficient of the resistances of the polysilicon piezoresistor is 0.003% to 0.005% per degree of Celsius according to the sensor design. The temperature coefficient of the offset voltage at 1 atm is 0.0019 mV and 0.0051 mV per degree of Celsius for a rectangular and circular diaphragm, respectively. The measurement results demonstrate the feasibility of the proposed pressure sensor as a highly sensitive circuit-integrated pressure sensor.

The Micro Pirani Gauge with Low Noise CDS-CTIA for In-Situ Vacuum Monitoring

  • Kim, Gyungtae;Seok, Changho;Kim, Taehyun;Park, Jae Hong;Kim, Heeyeoun;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.733-740
    • /
    • 2014
  • A resistive micro Pirani gauge using amorphous silicon (a-Si) thin membrane is proposed. The proposed Pirani gauge can be easily integrated with the other process-compatible membrane-type sensors, and can be applicable for in-situ vacuum monitoring inside the vacuum package without an additional process. The vacuum level is measured by the resistance changes of the membrane using the low noise correlated double sampling (CDS) capacitive trans-impedance amplifier (CTIA). The measured vacuum range of the Pirani gauge is 0.1 to 10 Torr. The sensitivity and non-linearity are measured to be 78 mV / Torr and 0.5% in the pressure range of 0.1 to 10 Torr. The output noise level is measured to be $268{\mu}V_{rms}$ in 0.5 Hz to 50 Hz, which is 41.2% smaller than conventional CTIA.

반도체 검출기의 절연 최적화를 위한 다층 절연막 평가

  • Park, Jeong-Eun;Myeong, Ju-Yeon;Kim, Dae-Guk;Kim, Jin-Seon;Sin, Jeong-Uk;Gang, Sang-Sik;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.372-372
    • /
    • 2014
  • 반도체 검출기는 입사되는 X선 에너지에 의하여 이온화되어 발생하는 전자 전공쌍을 수집함으로 방사선 정보를 확인하는 선량계로써 많은 연구와 활용이 이루어지고 있다. 하지만, X선 에너지에 의하여 반도체 검출기에서 발생하는 전기적 신호량이 높지 않기 때문에 누설 전류의 저감이 필수적이다. 누설 전류를 저감시키기 위한 방안으로 반도체 층과 전극 층의 Schottky Contact 구조의 설계, Insulating Layer의 사용, 높은 비저항의 반도체 물질 연구 등이 이루어지고 있다. 하지만, 기존에 누설 전류 저감을 위하여 Insulating Layer를 전극층과 반도체 층 사이에 형성하는 연구에 있어서 Insulating Layer와 반도체 층의 계면 사이에서 발생하는 Charge Trapping으로 인하여 생성되는 신호의 Reproducibility 저하, 동영상 적용의 제한 등의 문제점을 겪어왔다. 이에 본 논문에서는 누설 전류를 저감시킴과 동시에 Charge Trapping의 최소화를 이루기 위하여 Insulating Layer의 두께 최적화 연구를 수행하였다. 본 연구에서 사용한 Insulating Layer는 검출기 표면에 입사하는 X선 정보 손실을 최소화 시키는 동시에 누설 전류와 Charge Trapping을 최소화 시키는 방법으로써 CVD방법으로 검출기 표면에 균일하게 Insulating Layer를 코팅하였다. Insulating 물질은 Parylene을 사용하였으며, 그 중 온도, 습도 등 외부환경에 영향을 적게 받는 type C를 사용하였다. 증착에 사용한 장비의 진공도는 Torr로 설정하여 증착되는 Parylene의 두께가 약 $0.3{\mu}m$가 되게 하였으며, 실험에는 반도체 물질 PbO를 사용하였다. Parylene의 절연 특성은 Dark Current와 Sensitivity를 측정한 SNR을 이용하여 Parylene코팅이 되지 않은 동일 반도체 검출기와의 신호를 비교하였으며 또한 Parylene를 다층 제작한 검출기의 수집 신호량을 비교하였다. 제작한 검출기의 X선 조사 시의 수집 전하량 측정 결과, 100 kVp, 100mA, 0.03s의 X선 조건에서 $1V/{\mu}m$의 기준 시, Parylene를 코팅하지 않은 PbO 검출기의 Dark current는 0.0501 nA/cm2, Sensitivity는 0.6422 nC/mR-cm2, SNR은 12.184이었으며, Parylene단층의 두께인 $0.3{\mu}m$로 증착된 시편의 Dark current는 0.04097 nA/cm2, Sensitivity는 0.53732 nC/mR-cm2으로 Dark current가 감소되고 sensitivity도 감소하였지만 SNR은 13.1150으로 높아진 것을 확인할 수 있었다. Perylene이 $0.6{\mu}m$로 증착된 시편의 경우, Dark Current는 0.04064 nA/cm2, Sensitivity는 0.31473 nC/mR-cm2, SNR은 7.7443으로써 Insulating Layer가 없는 시편보다 SNR이 약 40% 낮아진 것을 확인할 수 있었다. Parylene이 $0.9{\mu}m$로 증착된 시편의 경우 Dark current는 0.0378 nA/cm2, Sensitivity 0.0461 nC/mR-cm2로 Insulating Layer가 없는 시편에 비해 SNR은 약 1/12배 감소한 1.2196이었고, Parylene이 $1.2{\mu}m$로 증착된 시편의 SNR은 1.1252로서 더 감소하였다. 따라서 Parylene을 다층 코팅한 검출기일수록 절연 효과의 영향이 커짐으로써 SNR 비교 시 수집되는 신호량이 줄어드는 것을 확인하였다. 반도체 검출기의 누설 전류를 저감시킴과 동시에 신호 수집율에 영향을 최소화시키기 위하여 Insulating Layer의 두께를 적절하게 설정하여 적용하면 Insulating Layer가 없는 검출기에 비해 누설전류를 최소한으로 줄일 수 있고 신호 검출효율이 감소하는 것을 방지할 수 있을 것이라 사료된다.

  • PDF

Wafer Level Vacuum Packaged Out-of-Plane and In-Plane Differential Resonant Silicon Accelerometers for Navigational Applications

  • Kim, Illh-Wan;Seok, Seon-Ho;Kim, Hyeon-Cheol;Kang, Moon-Koo;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.58-66
    • /
    • 2005
  • Inertial-grade vertical-type and lateral-type differential resonant accelerometers (DRXLs) are designed, fabricated using one process and tested for navigational applications. The accelerometers consist of an out-of-plane (for z-axis) accelerometer and in-plane (for x, y-axes) accelerometers. The sensing principle of the accelerometer is based on gap-sensitive electrostatic stiffness changing effect. It says that the natural frequency of the accelerometer can be changed according to an electrostatic force on the proof mass of the accelerometer. The out-of-plane resonant accelerometer shows bias stability of $2.5{\mu}g$, sensitivity of 70 Hz/g and bandwidth of 100 Hz at resonant frequency of 12 kHz. The in-plane resonant accelerometer shows bias stability of $5.2{\mu}g$, sensitivity of 128 Hz/g and bandwidth of 110 Hz at resonant frequency of 23.4 kHz. The measured performances of two accelerometers are suitable for an application of inertial navigation.

Correction of Secondary ion Mass Spectrometry depth profile distorted by oxygen flooding (Oxygen flooding에 의해 왜곡된 SIMS depth profile의 보정)

  • 이영진;정칠성;윤명노;이순영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.225-233
    • /
    • 2001
  • Distortion of Secondary Ion Mass Spectrometry(SIMS) depth profile, which is usually observed when the analysis is made using oxygen flooding on the surface of Si with oxide on it, has been corrected. The origin of distortion has been attributed to depth calibration error due to sputter rate difference and concentration calibration error due to relative sensitivity factor(RSF) difference between $SiO_2$ and Si layers, In order to correct depth calibration error, artifact in analysis of sodium ion on oxide was used to define the interface in SIMS depth profile and oxide thickness was measured with SEM and XPS. The differences of sputter rate and RSF between two layers have been attributed to volume swelling of Si substrate occurred by oxygen flooding induced oxidation. The corrected SIMS depth profiles showed almost the same results with those obtained without oxygen flooding.

  • PDF

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Sensitivity Enhancement for Thermophysical Properties Measurements via the Vacuum Operation of Heater-integrated Fluidic Resonators (가열 전극 통합 채널 공진기의 진공 환경 구동에 의한 열물성 측정의 민감도 향상)

  • Juhee Ko;Jungchul Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.39-43
    • /
    • 2023
  • Microscale thermophysical property measurements of liquids have been developed considering the increasing interest in the thermal management of cooling systems and energy storage/transportation systems. To accurately predict the heat transfer performance, information on the thermal conductivity, heat capacity, and density is required. However, a simultaneous analysis of the thermophysical properties of small-volume liquids has rarely been considered. Recently, we proposed a new methodology to simultaneously analyze the aforementioned three intrinsic properties using heater-integrated fluidic resonators (HFRs) in an atmospheric pressure environment comprising a microchannel, resistive heater/thermometer, and mechanical resonator. Typically, the thermal conductivity and volumetric heat capacity are measured based on a temperature response resulting from heating using a resistive thermometer, and the specific heat capacity can be obtained from the volumetric heat capacity by using a resonance densitometer. In this study, we analyze methods to improve the thermophysical property measurement performance using HFRs, focusing on the effect of the ambience around the sensor. The analytical method is validated using a numerical analysis, whose results agree well with preliminary experimental results. In a vacuum environment, the thermal conductivity measurement performance is enhanced, except for the thermal conductivity range of most gases, and the sensitivity of the specific heat capacity measurement is enhanced owing to an increase in the time constant.

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF