• Title/Summary/Keyword: vacuum pressure

Search Result 1,611, Processing Time 0.057 seconds

A Study on Hardening Zone by Vacuum Consolidation Drainage Method (진공압밀 배수공법에 의한 Hardening Zone에 대한 연구)

  • Chung, Youn-In;Kim, Hee-Joong;Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • The relationships were studied between the range of hardening zone and the intensity of vacuum pressure in case of applying vacuum consolidation drainage method for soil improvement. A testing apparatus was made to measure the range of hardening zone varying the water content and the intensity of vacuum pressure for 3 different the highly compressible dredged clays(Gwangyang, Busan and Mokpo). In case of applying high vacuum pressure, the hardening zone is not spreaded as compared to low vacuum pressure because of the clogging of drainage and developed hardening zone near the drainage.

Vacuum distribution with depth in vertical drains and soil during preloading

  • Khan, Abdul Qudoos;Mesri, G.
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • The vacuum consolidation method which was proposed by Kjellman in 1952 has been studied extensively and used successfully since early 1980 throughout the world, especially in East and Southeast Asia. Despite the increased successful use, different opinions still exist, especially in connection to distribution of vacuum with depth and time in vertical drains and in soil during preloading of soft ground. Porewater pressure measurements from actual cases of field vacuum and vacuum-fill preloading as well as laboratory studies have been examined. It is concluded that (a) a vacuum magnitude equal to that in the drainage blanket remains constant with depth and time within the vertical drains, (b) as expected, vacuum does not develop at the same rate within the soil at different depths; however, under ideal conditions vacuum is expected to become constant with depth in soil after the end of primary consolidation, and (c) there exists a possibility of internal leakage in vacuum intensity at some sublayers of a soft clay and silt deposit. A case history of vacuum loading with sufficient subsurface information is analyzed using the ILLICON procedure.

Electron Density and Electron Temperature in Atmospheric Pressure Microplasma

  • Tran, T.H.;Kim, J.H.;Seong, D.J.;Jeong, J.R.;You, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.152-152
    • /
    • 2012
  • In this work we measured electron temperature and electron density of a microplasma by optical emission spectroscopy. The plasma is generated from a small discharge gap of a microwave parallel stripline resonator (MPSR) in Helium at atmospheric pressure. The microwave power supplied for this plasma source from 0.5 to 5 watts at a frequency close to 800 MHz. The electron temperature and electron density were estimated through Collisional-radiative model combined with Corona-equilibrium model. The results show that the electron density and temperature of this plasma in the case small discharge gap width are higher than that in larger gap width. The diagnostic techniques and associated challenges will be presented and discussed.

  • PDF

Application of Conformal Mapping in Analysis the Parallel Stripline Resonator

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.180-180
    • /
    • 2012
  • A microplasma system source based on microwave parallel stripline resonator (MPSR) was developed for the generation of microplasmas in a wide range of pressure from some torr to 760 torr. This source was operated at its resonance frequency that much depends upon not only its discharge gap size but also operated pressure. This paper applied a simple circuit model to analyze the effects of discharge gap size and pressure to resonance frequency and impedance of MPSR in the cases with and without plasma exist inside the discharge gap. In the process of calculating, the conformal mapping method was used to estimate the capacitance of the MPSR. The calculating results by using circuit model agree well with the simulation results that using commercial CST microwave studio software.

  • PDF

Simulation of Modeling Characteristics of Pumping Design Factor on Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, with the development of advanced thin film devices comes the need for constant high quality vacuum as the deposition pressure is more demanding. It is for this reason our research seeks to understand how the variable design factors are employed in such vacuum systems. In this study, the effects of design factor applications on the vacuum characteristics were simulated to obtain the optimum design modeling of variable models on an ultra high vacuum system. The commercial vacuum system simulator, $VacSim^{(multi)}$, was used in our investigation. The reliability of the employed simulator was verified by the simulation of the commercially available models of ultra high vacuum system. Simulated vacuum characteristics of the proposed modeling aligned with the observed experimental behavior of real systems. Simulated behaviors showed the optimum design models for the ideal conditions to achieve optimal pressure, pumping speed, and compression ratio in these systems.

The Pillar Design Variable Determination up of the Vacuum Glazing Panel using FEM (FEM을 이용한 진공유리 패널의 지지대 설계변수 설정)

  • Kim, Jae-Kyung;Jeon, Euy-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2011
  • There are various methods in the flat panel display manufacture. The cost reduction effect is very big in case of using the screen printing method. The screen printing method is much used in the process of forming PDP barrier and can apply to the process of arranging the pillars for maintaining the vacuum gap of the vacuum glazing panel. The pillar which is one of the core elements for comprising vacuum glazing maintains the vacuum gap overcoming the vacuum pressure difference with the atmospheric pressure generated in vacuum glazing. At the same time, the deformation phenomenon by vacuum pressure is relived. In this paper, by using FEM about three considered in the pillar design and arrangement kinds of limiting factors, the simulation was performed. The pillar optimum arrangement method at within the maximum allowable tensile stress and heat transfer coefficients according to the arrangement try to be presented based upon the analyzed result data review and this validity tries to be verified by FEM.

Finite Difference Analysis of Dynamic Characteristics of Negative Pressure Rectangular Porous Gas Bearings (음압 직각 다공질 공기베어링의 동특성에 관한 유한차분 해석)

  • Hwang Pyung;Khan Polina;Lee Chun-Moo;Kim Eun-Hyo
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • The numerical analysis of the negative pressure porous gas bearings is presented. The pressure distribution is calculated using the finite difference method. The Reynolds equation and Darcy's equation are solved simultaneously. The air bearing stiffness and damping are evaluated using the perturbation method. Rectangular uniform grid is employed to model the bearing. The vacuum preloading is considered. The pressure in the vacuum pocket is assumed to be a constant negative pressure. The total load, stiffness, damping and flow rate are calculated fur several geometrical configurations and several values of negative pressure. It is found that too large vacuum pocket can result in negative total force.

Characteristic of stress and strain of soft ground applied individual vacuum pressure (개별진공압이 적용된 연약지반의 응력과 변형 특성)

  • Ahn, Dong-Wook;Han, Sang-Jae;Kim, Byung-Il;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.467-472
    • /
    • 2010
  • Individual vacuum pressure method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or pre-loading method. In this study, given the inner displacement of the ground where the individual vacuum pressure is applied, this dissertation aimed to reproduce the state of stress in the ground that is subject to the constraints created by the depth of improvement area. Modified Cam Clay theory which made it possible to take into account the isotropic displacement of the ground was applied to the NAP-IVP used simulation; the conception of equivalent permeability proposed by Hird was also applied so that the 3-dimensional real construction effect of drain materials could be reflected in the analysis.

  • PDF

Pressure Effect on Safranine Penetration in Some Hardwood Species

  • Chong, Song-Ho;Ahmed, Sheikh Ali;Park, Byung-Su;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2007
  • An experiment was conducted to know the safranine impregnation distance from surface to inward using 6 different hardwood species. During impregnation, 3 parameters were applied-vacuum, pressure and soaking time. Only vacuum treatment did not increase the permeability of wood. Vacuum followed by pressure increased the penetration depth of safranine in radial, tangential and longitudinal direction. Longitudinal penetration was found easy to impregnate. Comparing with radial and tangential direction, radial penetration was found easy. There was a striking difference among sapwood and heartwood permeability. Safranine input depth was found highest in diffused porous wood rather than in ring porous wood. At increased vacuum and pressure, safranine penetration was found easy.

  • PDF