• 제목/요약/키워드: vaccines

검색결과 766건 처리시간 0.03초

닭 전염성 후두기관염 생독백신의 안전성과 효능 (Safety and efficacy of modified-live infectious laryngotracheitis vaccines)

  • 한명국;이오수;김재홍
    • 대한수의학회지
    • /
    • 제42권2호
    • /
    • pp.241-251
    • /
    • 2002
  • Modified-live (ML) infectious laryngotracheitis (ILT) vaccines have been widely used as a preventive measure in Korea since the first outbreak of ITL. Recently, it has been observed that chickens vaccinated with the commercially available ML ILT vaccine have sometimes exhibited adverse clinical signs. In this study, we evaluated the quality of the vaccines by comparing titer of each vaccine batch and testing the stability of ILT virus (ILTV) in vaccine diluents and compared the safety and efficacy of vaccines in specific pathogen free (SPF) chickens. The ratio of maximum titer to minimum titer of vaccine produced by most manufacturers was 2 to 15. However, 2 out of 11 manufacturers produced vaccines of which the ratio was 74 to 478. Most vaccines examined were maintained vaccine titers suitable for national regulations within expiry date. However, some vaccines did not keep the titer required for the national regulations. In the test for stability of ILTV in various diluents, ILTV was highly stable in lactose-phosphate-glutamine-gelatin solution, sucrose-phophate-glutamine-albumin solution and some vaccine diluents produced by manufacturers. The safety of ML ILT vaccines was assessed in 10-day-old SPF chicks. Mortality in SPF chicks inoculated intratracheally with one dose of vaccine varied depending on vaccines and some vaccines produced 50-85% mortality. Seven-week-old SPF chickens were vaccinated intraocularly with ML ILT vaccines and then challenged intratracheally with ILT challenge virus 14 days after vaccination. The protection rate was assessed by clinical signs and reisolation of the ILT challenge virus from tracheas taken at day 4 after challenge. There were slight respiratory reactions in some vaccinated chickens after vaccination but these reactions disappeared within 5 days after vaccination. No further clinical signs and death were observed. Protection rate determined by clinical signs and mortality was 100% in all vaccinated groups. However, the challenge virus was isolated from all tracheas of chickens vaccinated with vaccine B or control groups. The challenge virus was also isolated in the trachea of one in five chickens vaccinated with either vaccine F or K, but not in tracheas of chickens vaccinated with other vaccines. In the present study, the stability of vaccine diluents, pathogenicity and protection rate based on reisolation test of the challenge virus were different depending on vaccines produced by eleven manufacturers.

Production of Recombinant Anti-Cancer Vaccines in Plants

  • Lee, Jeong Hwan;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.345-353
    • /
    • 2017
  • Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.

현대에서의 생백신과 이에 대한 면역반응의 재평가 (Reappraisal of Live Vaccines and Immunity in These Modern Days)

  • 김경효
    • Pediatric Infection and Vaccine
    • /
    • 제16권1호
    • /
    • pp.24-30
    • /
    • 2009
  • The vaccines has been developed over the first two hundred years since Jenner's smallpox vaccination. In modern days, vaccination has had the largest impact on the incidence and persistence of infections. Although natural infection induces lifelong immunity, the assumption that the vaccine also confers permanent protection has been reconsidered following outbreaks of measles in students who had been vaccinated 15-20 years prior to infection in the US in the 1980s. Clinical studies have proposed several mechanisms such as vaccine failure in some individuals and the subsequent loss of immunity after vaccination. An ideal vaccine is relatively easy to define, but few real vaccines approach the ideal. Many difficulties account for the failure in producing these ideal vaccines. However, recent advances in methods for studying immune response to pathogens have provided a better understanding of immune mechanisms. Based on these findings, the development of good vaccine formulations allowing stimulation of optimal and prolonged protective immunity and immunization policies or schedules should lead to the introduction of vaccines for previously resistant organisms.

  • PDF

Editorial : COVID-19 infection and ginseng: Predictive influenza virus strains and non-predictive COVID-19 vaccine strains

  • Dong-Kwon Rhee
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.347-348
    • /
    • 2023
  • Vaccines help protect people from infections. However, Coronavirus 2019 (COVID-19) vaccinees often still become infected with COVID-19 variants (breakthrough infections) and may go on to suffer from long COVID symptoms due to short-lasting immunity and less-effective protection provided by available vaccines. Moreover, the current COVID-19 vaccines do not prevent viral transmission and ward off only about 15% of breakthrough infections. To prepare more effective vaccines, it is essential to predict the viral strains that will be circulating based on available epidemiological data. The World Health Organization recommends in advance which influenza strains are expected to be prevalent during influenza season to guide the production of influenza vaccines by pharmaceutical companies. However, future emerging COVID-19 strain(s) have not been possible to predict since no sound epidemiological information has been established. Thus, for more effective protection, immune stimulators alone or in combination with vaccines would be preferable to protect people from COVID-19 infection. One of those remedies would be ginseng, which has been used for potentiating immunity in the past.

Development of a New Approach to Determine the Potency of Bacille Calmette-Guérin Vaccines Using Flow Cytometry

  • Gweon, Eunjeong;Choi, Chanwoong;Kim, Jaeok;Kim, Byungkuk;Kang, Hyunkyung;Park, Taejun;Ban, Sangja;Bae, Minseok;Park, Sangjin;Jeong, Jayoung
    • Osong Public Health and Research Perspectives
    • /
    • 제8권6호
    • /
    • pp.389-396
    • /
    • 2017
  • Objectives: To circumvent the limitations of the current golden standard method, colony-forming unit (CFU) assay, for viability of Bacille Calmette-$Gu{\acute{e}}rin$ (BCG) vaccines, we developed a new method to rapidly and accurately determine the potency of BCG vaccines. Methods: Based on flow cytometry (FACS) and fluorescein diacetate (FDA) as the most appropriate fluorescent staining reagent, 17 lots of BCG vaccines for percutaneous administration and 5 lots of BCG vaccines for intradermal administration were analyzed in this study. The percentage of viable cells measured by flow cytometry along with the total number of organisms in BCG vaccines, as determined on a cell counter, was used to quantify the number of viable cells. Results: Pearson correlation coefficients of FACS and CFU assays for percutaneous and intradermal BCG vaccines were 0.6962 and 0.7428, respectively, indicating a high correlation. The coefficient of variation value of the FACS assay was less than 7%, which was 11 times lower than that of the CFU assay. Conclusion: This study contributes to the evaluation of new potency test method for FACS-based determination of viable cells in BCG vaccines. Accordingly, quality control of BCG vaccines can be significantly improved.

암백신 (Cancer Vaccines)

  • 손은화;인상환;표석능
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.55-67
    • /
    • 2005
  • Cancer vaccine is an active immunotherapy to stimulate the immune system to mount a response against the tumor specific antigen. Working as a stimulant to the body's own immune system, cancer vaccines help the body recognize and destroy targeted cancers and may help to shrink advanced tumors. Research is currently underway to develop therapeutic cancer vaccines. It is also possible to develop prophylactic vaccines in the future. The whole cell approach to eradicate cancer has used whole cancer cells to make vaccine. In an early stage of this approach, whole cell lysate or a mixture of immunoadjuvant and inactivated cancer cells has been used. Improved vaccines are being developed that utilize cytokines or costimulatory molecules to mount an attack against cancer cells. In case of melanoma, these vaccines are expected to have a therapeutic effect of vaccine. Furthermore, it is attempting to treat stomach cancer, colorectal cancer, pancreatic cancer, and prostate cancer. Other vaccines are being developing that are peptide vaccine, recombinant vaccine and dendritic cell vaccine. Out of them, reintroduction of antigen-specific dendritic cells into patient and DNA vaccine are mostly being conducted. Currently, research and development efforts are underway to develop therapeutic cancer vaccine such as DNA vaccine for the treatment of multiple forms of cancers.

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.

Molecular identification of the vaccine strain from the inactivated bovine viral diarrhea virus (BVDV) vaccines

  • Yang, Dong-Kun;Kim, Ha-Hyun;Cho, Soo-Dong;Choi, Sung-Suk;Kim, Jae-Jo;Song, Jae-Young
    • 한국동물위생학회지
    • /
    • 제36권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Since the 1980's, several kinds of inactivated bovine viral diarrhea virus (BVDV) vaccines have been used to immunize domestic animals such as cattle and goat in Korea. Immunogenicity of the BVDV vaccines has been checked by the Korean Veterinary Authority using laboratory animals. In this study, we applied a molecular method to investigate the genetic characterization of the BVDV genes in six commercial inactivated BVDV vaccines, and determined the efficiency of two extraction reagents (i.e., sodium citrate or isopropyl myristate) to separate the vaccine antigens from the antigen/adjuvant complexes. Six partial non-coding regions (288 bp) were successfully amplified with specific primer sets, which demonstrated that sodium citrate is more efficient in extracting viral RNA from inactivated gel vaccines than isopropyl myristae. In addition, we identified the virus strains from the vaccines by analyzing the nucleotide sequences of the 5' non-coding region (NCR) of BVDV. The nucleotide similarity of the partial 5' NCR ranged from 95.1 to 100% among BVDV vaccine strains, respectively, indicating that a few manufacturers used different BVDV strains to produce their vaccines.

Continuous DC-CIK Infusions Restore CD8+ Cellular Immunity, Physical Activity and Improve Clinical Efficacy in Advanced Cancer Patients Unresponsive to Conventional Treatments

  • Zhao, Yan-Jie;Jiang, Ni;Song, Qing-Kun;Wu, Jiang-Ping;Song, Yu-Guang;Zhang, Hong-Mei;Chen, Feng;Zhou, Lei;Wang, Xiao-Li;Zhou, Xin-Na;Yang, Hua-Bing;Ren, Jun;Lyerly, Herbert Kim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2419-2423
    • /
    • 2015
  • Background: There are few choices for treatment of advanced cancer patients who do not respond to or tolerate conventional anti-cancer treatments. Therefore this study aimed to deploy the benefits and clinical efficacy of continuous dendritic cell-cytokine induced killer cell infusions in such patients. Materials and Methods: A total of 381 infusions (from 67 advanced cases recruited) were included in this study. All patients underwent peripheral blood mononuclear cell apheresis for the following cellular therapy and dendritic cells-cytokine induced killer cells were expanded in vitro. Peripheral blood T lymphocyte subsets were quantified through flow cytometry to address the cellular immunity status. Clinical efficacy and physical activities were evaluated by RECIST criteria and Eastern Cooperative Oncology Group scores respectively. Logistic regression model was used to estimate the association between cellular infusions and clinical benefits. Results: An average of $5.7{\pm}2.94{\times}10^9$ induced cells were infused each time and patients were exposed to 6 infusions. Cellular immunity was improved in that cytotoxic $CD8^+CD28^+$ T lymphocytes were increased by 74% and suppressive $CD8^+CD28^-$ T lymphocytes were elevated by 16% (p<0.05). Continuous infusion of dendritic cells-cytokine induced killer cells was associated with improvement of both patient status and cellular immunity. A median of six infusions were capable of reducing risk of progression by 70% (95%CI 0.10-0.91). Every elevation of one ECOG score corresponded to a 3.90-fold higher progression risk (p<0.05) and 1% increase of $CD8^+CD28^-$ T cell proportion reflecting a 5% higher risk of progression (p<0.05). Conclusions: In advanced cancer patients, continuous dendritic cell-cytokine induced killer cell infusions are capable of recovering cellular immunity, improving patient status and quality of life in those who are unresponsive to conventional cancer treatment.

송아지 대장균 백신개발에 관한 연구 (Studies on Protective Efficacy of Escherichia coli Vaccines)

  • 안재문;곽학구;김홍기
    • 한국동물위생학회지
    • /
    • 제15권1호
    • /
    • pp.26-31
    • /
    • 1992
  • The oil emulsion and alhydrogel vaccines were prepared from a strain of enterotoxigenic Escherichia coli isolated from calves with diarrhea and their protective efficacy and immunogenicity were tested in Guinea-pigs. Enterotoxigenic Escherichia coli, isolated from calves with diarrhea, has K99 and F4l antigen as 46.2% and 50.9% with 48 and 53 strains respectively out of 104 strains. The protective efficacy of the gel and oil vaccines were 60% and 80% respectively. Agglutinin titers to sera of Guinea-pigs vaccinated with experimental gel and oil vaccines peaked at 5 and 6 weeks after vaccination.

  • PDF