Browse > Article
http://dx.doi.org/10.1007/s10059-009-0015-1

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events  

Kang, Sang-Moo (Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine)
Compans, Richard W. (Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine)
Abstract
The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.
Keywords
adaptive; immune responses; innate; memory B cells; pathogen; plasma cells; signaling; TLRs; vaccine; VLPs;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Alarcon, J.B., Hartley, A.W., Harvey, N.G., and Mikszta, J.A. (2007). Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin. Vaccine Immunol. 14, 375-381   DOI   PUBMED   ScienceOn
2 Bernasconi, N.L., Traggiai, E., and Lanzavecchia, A. (2002). Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199-2202   DOI   PUBMED   ScienceOn
3 Bertolotti-Ciarlet, A., Ciarlet, M., Crawford, S.E., Conner, M.E., and Estes, M.K. (2003). Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 21, 3885-3900   DOI   ScienceOn
4 Bowie, A., and O'Neill, L.A. (2000). The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J. Leukoc. Biol. 67, 508-514   DOI   PUBMED
5 Carter, R.H., and Fearon, D.T. (1992). CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105-107   DOI   PUBMED
6 Carter, R.H., Spycher, M.O., Ng, Y.C., Hoffman, R., and Fearon, D.T. (1988). Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J. Immunol. 141, 457-463   PUBMED
7 Chen, W., and Gluud, C. (2005). Vaccines for preventing hepatitis B in health-care workers. Cochrane Database Syst. Rev.(4), CD000100   DOI   PUBMED   ScienceOn
8 Chilosi, M., Adami, F., Lestani, M., Montagna, L., Cimarosto, L., Semenzato, G., Pizzolo, G., and Menestrina, F. (1999). CD138/syndecan-1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod. Pathol. 12, 1101-1106   PUBMED
9 Crotty, S., Aubert, R.D., Glidewell, J., and Ahmed, R. (2004). Tracking human antigen-specific memory B cells: a sensitive and generalized ELISPOT system. J. Immunol. Methods 286, 111-122   DOI   PUBMED   ScienceOn
10 Deml, L., Speth, C., Dierich, M. P., Wolf, H., and Wagner, R. (2005). Recombinant HIV-1 $Pr55^{gag}$ virus-like particles: potent stimulators of innate and acquired immune responses. Mol. Immunol. 42, 259-277   DOI   PUBMED   ScienceOn
11 Deng, L., Dai, P., Parikh, T., Cao, H., Bhoj, V., Sun, Q., Chen, Z., Merghoub, T., Houghton, A., and Shuman, S. (2008). Vaccinia virus subverts a mitochondrial antiviral signaling proteindependent innate immune response in keratinocytes through its double-stranded RNA binding protein, E3. J. Virol. 82, 10735-10746   DOI   PUBMED   ScienceOn
12 Germain, R.N. (2004). An innately interesting decade of research in immunology. Nat. Med. 10, 1307-1320   DOI   PUBMED   ScienceOn
13 Grgacic, E.V., and Anderson, D.A. (2006). Virus-like particles: passport to immune recognition. Methods 40, 60-65   DOI   PUBMED   ScienceOn
14 Gururajan, M., Jacob, J., and Pulendran, B. (2007). Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE 2, e863   DOI   PUBMED
15 Gustavsson, S., Kinoshita, T., and Heyman, B. (1995). Antibodies to murine complement receptor 1 and 2 can inhibit the antibody response in vivo without inhibiting T helper cell induction. J. Immunol. 154, 6524-6528   PUBMED
16 Hoebe, K., Janssen, E., and Beutler, B. (2004). The interface between innate and adaptive immunity. Nat. Immunol. 5, 971-974   DOI   PUBMED   ScienceOn
17 Kopf, M., Abel, B., Gallimore, A., Carroll, M., and Bachmann, M.F. (2002). Complement component $C_{3}$ promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med. 8, 373-378   DOI   PUBMED   ScienceOn
18 Jegerlehner, A., Maurer, P., Bessa, J., Hinton, H.J., Kopf, M., and Bachmann, M.F. (2007). TLR9 signaling in B cells determines class switch recombination to IgG2a. J. Immunol. 178, 2415-2420   DOI   PUBMED
19 Kalia, V., Sarkar, S., Gourley, T.S., Rouse, B.T., and Ahmed, R. (2006). Differentiation of memory B and T cells. Curr. Opin. Immunol. 18, 255-264   DOI   PUBMED   ScienceOn
20 Kang, S.M., Guo, L., Yao, Q., Skountzou, I., and Compans, R.W. (2004). Intranasal immunization with inactivated influenza virus enhances immune responses to coadministered simian-human immunodeficiency virus-like particle antigens. J. Virol. 78, 9624-9632   DOI   PUBMED   ScienceOn
21 Loo, Y.M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez- Sobrido, L., Akira, S., Gill, M.A., Garcia-Sastre, A., Katze, M.G., et al. (2008). Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335-345   DOI   PUBMED   ScienceOn
22 Martin, M., Michalek, S.M., and Katz, J. (2003). Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A. Infect. Immun. 71, 2498-2507   DOI   PUBMED
23 Nimmerjahn, F., and Ravetch, J.V. (2005). Divergent immunoglobuling subclass activity through selective Fc receptor binding. Science 310, 1510-1512   DOI   PUBMED   ScienceOn
24 Sailaja, G., Skountzou, I., Quan, F.S., Compans, R.W., and Kang, S.M. (2007). Human immunodeficiency virus-like particles activate multiple types of immune cells. Virology 362, 331-341   DOI   ScienceOn
25 Pulendran, B. (2004). Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199, 227-250   DOI   PUBMED   ScienceOn
26 Pushko, P., Tumpey, T.M., Bu, F., Knell, J., Robinson, R., and Smith, G. (2005). Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 23, 5751-5759   DOI   PUBMED   ScienceOn
27 Quan, F.S., Steinhauer, D., Huang, C., Ross, T.M., Compans, R.W., and Kang, S.M. (2008b). A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine 26, 3352-3361   DOI   ScienceOn
28 Shinall, S.M., Gonzalez-Fernandez, M., Noelle, R.J., and Waldschmidt, T.J. (2000). Identification of murine germinal center B cell subsets defined by the expression of surface isotypes and differentiation antigens. J. Immunol. 164, 5729-5738   DOI   PUBMED
29 Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin. Immunol. 16, 3-9   DOI   PUBMED   ScienceOn
30 Talon, J., Salvatore, M., O'Neill, R. E., Nakaya, Y., Zheng, H., Muster, T., Garcia-Sastre, A., and Palese, P. (2000). Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proc. Natl. Acad. Sci. USA 97, 4309-4314   DOI   PUBMED   ScienceOn
31 Warfield, K.L., Swenson, D.L., Demmin, G., and Bavari, S. (2005). Filovirus-like particles as vaccines and discovery tools. Expert Rev. Vaccines 4, 429-440   DOI   PUBMED   ScienceOn
32 Van Damme, P., Oosterhuis-Kafeja, F., Van der Wielen, M., Almagor, Y., Sharon, O., and Levin, Y. (2009). Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27, 454-459   DOI   ScienceOn
33 van der Sluijs, K.F., van Elden, L., Nijhuis, M., Schuurman, R., Florquin, S., Jansen, H.M., Lutter, R., and van der Poll, T. (2003). Toll-like receptor 4 is not involved in host defense against respiratory tract infection with Sendai virus. Immunol. Lett. 89, 201-206   DOI   ScienceOn
34 Van Herck, K., Beutels, P., Van Damme, P., Beutels, M., Van den Dries, J., Briantais, P., and Vidor, E. (2000). Mathematical models for assessment of long-term persistence of antibodies after vaccination with two inactivated hepatitis A vaccines. J. Med. Virol. 60, 1-7   DOI   ScienceOn
35 Burrows, P.D., and Cooper, M.D. (1997). B cell development and differentiation. Curr. Opin. Immunol. 9, 239-244   DOI   ScienceOn
36 Sun, Y., Carrion, R., Jr., Ye, L., Wen, Z., Ro, Y.T., Brasky, K., Ticer, A.E., Schwegler, E.E., Patterson, J.L., Compans, R.W., et al. (2009). Protection against lethal challenge by Ebola virus-like particles produced in insect cells. Virology 538, 12-21   DOI   ScienceOn
37 van Duin, D., Medzhitov, R., and Shaw, A.C. (2006). Triggering TLR signaling in vaccination. Trends Immunol. 27, 49-55   DOI   PUBMED   ScienceOn
38 Vinuesa, C.G., Tangye, S.G., Moser, B., and Mackay, C.R. (2005). Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853-865   DOI   PUBMED   ScienceOn
39 Hebell, T., Ahearn, J.M., and Fearon, D.T. (1991). Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science 254, 102-105   DOI   PUBMED
40 Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745   DOI   PUBMED   ScienceOn
41 Li, Z., Jiang, Y., Jiao, P., Wang, A., Zhao, F., Tian, G., Wang, X., Yu,K., Bu, Z., and Chen, H. (2006). The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 80, 11115-11123   DOI   PUBMED   ScienceOn
42 Querec, T., Bennouna, S., Alkan, S., Laouar, Y., Gorden, K., Flavell, R., Akira, S., Ahmed, R., and Pulendran, B. (2006). Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413-424   DOI   PUBMED   ScienceOn
43 Bright, R.A., Carter, D.M., Crevar, C.J., Toapanta, F.R., Steckbeck, J.D., Cole, K.S., Kumar, N.M., Pushko, P., Smith, G., Tumpey, T.M., et al. (2008). Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS ONE 3, e1501   DOI   ScienceOn
44 Cairns, B., Maile, R., Barnes, C.M., Frelinger, J.A., and Meyer, A.A. (2006). Increased Toll-like receptor 4 expression on T cells may be a mechanism for enhanced T cell response late after burn injury. J. Trauma 61, 293-298; discussion 298-299   DOI   PUBMED
45 Manz, R.A., Hauser, A.E., Hiepe, F., and Radbruch, A. (2005). Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367-386   DOI   PUBMED   ScienceOn
46 Quan, F.S., Sailaja, G., Skountzou, I., Huang, C., Vzorov, A., Compans, R.W., and Kang, S.M. (2007b). Immunogenicity of viruslike particles containing modified human immunodeficiency virus envelope proteins. Vaccine 25, 3841-3850   DOI   PUBMED   ScienceOn
47 Honorati, M.C., Palareti, A., Dolzani, P., Busachi, C.A., Rizzoli, R., and Facchini, A. (1999). A mathematical model predicting antihepatitis B virus surface antigen (HBs) decay after vaccination against hepatitis B. Clin. Exp. Immunol. 116, 121-126   DOI
48 Pichichero, M.E., Voloshen, T., and Passador, S. (1999). Kinetics of booster responses to Haemophilus influenzae type B conjugate after combined diphtheria-tetanus-acelluar pertussis-Haemophilus influenzae type b vaccination in infants. Pediatr. Infect. Dis. J. 18, 1106-1108   DOI   PUBMED   ScienceOn
49 Blazevic, V., Trubey, C.M., and Shearer, G.M. (2000). Comparison of in vitro immunostimulatory potential of live and inactivated influenza viruses. Hum. Immunol. 61, 845-849   DOI   ScienceOn
50 Crotty, S., Felgner, P., Davies, H., Glidewell, J., Villarreal, L., and Ahmed, R. (2003). Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171, 4969-4973   DOI   PUBMED
51 Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., and Si-Tahar, M. (2006). Detrimental contribution of the Toll-like receptor (TLR)$_{3}$ to influenza A virus-induced acute pneumonia. PLoS Pathog 2, e53   DOI   PUBMED   ScienceOn
52 Liu, N., Ohnishi, N., Ni, L., Akira, S., and Bacon, K.B. (2003). CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat. Immunol. 4, 687-693   DOI   PUBMED   ScienceOn
53 Galarza, J.M., Latham, T., and Cupo, A. (2005). Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol. 18, 244-251   DOI   PUBMED   ScienceOn
54 Palucka, A.K., Laupeze, B., Aspord, C., Saito, H., Jego, G., Fay, J., Paczesny, S., Pascual, V., and Banchereau, J. (2005). Immunotherapy via dendritic cells. Adv. Exp. Med. Biol. 560, 105-114   DOI   PUBMED
55 Reif, K., Ekland, E.H., Ohl, L., Nakano, H., Lipp, M., Forster, R., and Cyster, J.G. (2002). Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94-99   DOI   PUBMED   ScienceOn
56 Beutler, B., Hoebe, K., Georgel, P., Tabeta, K., and Du, X. (2004). Genetic analysis of innate immunity: TIR adapter proteins in innate and adaptive immune responses. Microbes Infect. 6, 1374-1381   DOI   PUBMED   ScienceOn
57 Dubois, B., Massacrier, C., and Caux, C. (2001). Selective attraction of naive and memory B cells by dendritic cells. J. Leukoc. Biol. 70, 633-641   PUBMED
58 Fernandez-Sesma, A., Marukian, S., Ebersole, B.J., Kaminski, D., Park, M.S., Yuen, T., Sealfon, S.C., Garcia-Sastre, A., and Moran, T.M. (2006). Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 80, 6295-6304   DOI   PUBMED   ScienceOn
59 Klaus, G.G., Pepys, M.B., Kitajima, K., and Askonas, B.A. (1979). Activation of mouse complement by different classes of mouse antibody. Immunology 38, 687-695   PUBMED
60 Tiberio, L., Fletcher, L., Eldridge, J.H., and Duncan, D.D. (2004). Host factors impacting the innate response in humans to the candidate adjuvants RC529 and monophosphoryl lipid A. Vaccine 22, 1515-1523   DOI   PUBMED   ScienceOn
61 Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J., and Madara, J.L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882-1885   DOI   PUBMED
62 Kelsoe, G. (2000). Studies of the humoral immune response. Immunol. Res. 22, 199-210   DOI
63 de Lalla, F., Rinaldi, E., Santoro, D., and Pravettoni, G. (1988). Immune response to hepatitis B vaccine given at different injection sites and by different routes: a controlled randomized study. Eur. J. Epidemiol. 4, 256-258   DOI   PUBMED
64 Quan, F.S., Huang, C., Compans, R.W., and Kang, S.M. (2007a). Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol. 81, 3514-3524   DOI   PUBMED   ScienceOn
65 Takeshita, F., Kobiyama, K., Miyawaki, A., Jounai, N., and Okuda, K. (2008). The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy 4, 67-69   DOI
66 Flehmig, B., Staedele, H., Xueref, C., Vidor, E., Zuckerman, J., and Zuckerman, A. (1997). Early appearance of neutralizing antibodies after vaccination with an inactivated hepatitis A vaccine. J. Infect. 35, 37-40   DOI   ScienceOn
67 Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S., and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947-950   DOI   PUBMED   ScienceOn
68 Akira, S., Yamamoto, M., and Takeda, K. (2003). Role of adapters in Toll-like receptor signalling. Biochem. Soc. Trans. 31, 637-642   DOI
69 Blink, E.J., Light, A., Kallies, A., Nutt, S.L., Hodgkin, P.D., and Tarlinton, D.M. (2005). Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545-554   DOI   PUBMED   ScienceOn
70 Buonaguro, L., Tornesello, M.L., Tagliamonte, M., Gallo, R.C., Wang, L.X., Kamin-Lewis, R., Abdelwahab, S., Lewis, G.K., and Buonaguro, F.M. (2006). Baculovirus-derived human immunodeficiency virus type 1 virus-like particles activate dendritic cells and induce ex vivoT-cell responses. J. Virol. 80, 9134-9143   DOI   PUBMED   ScienceOn
71 Khanlou, H., Sanchez, S., Babaie, M., Chien, C., Hamwi, G., Ricaurte, J.C., Stein, T., Bhatti, L., Denouden, P., and Farthing, C. (2006). The safety and efficacy of dose-sparing intradermal administration of influenza vaccine in human immunodeficiency virus-positive patients. Arch. Intern. Med. 166, 1417   DOI   PUBMED   ScienceOn
72 Lobue, A.D., Lindesmith, L., Yount, B., Harrington, P.R., Thompson, J.M., Johnston, R.E., Moe, C.L., and Baric, R.S. (2006). Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24, 5220-5234   DOI   PUBMED   ScienceOn
73 Plotkin, S.A. (2005). Vaccines: past, present and future. Nat. Med. 11, S5-11   DOI   PUBMED   ScienceOn
74 Shapiro-Shelef, M., and Calame, K. (2005). Regulation of plasmacell development. Nat. Rev. Immunol. 5, 230-242   DOI   PUBMED   ScienceOn
75 Gavin, A.L., Hoebe, K., Duong, B., Ota, T., Martin, C., Beutler, B., and Nemazee, D. (2006). Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314, 1936-1938   DOI   PUBMED   ScienceOn
76 Minges Wols, H.A., Underhill, G.H., Kansas, G.S., and Witte, P.L. (2002). The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J. Immunol. 169, 4213-4221   DOI   PUBMED
77 Mortola, E., and Roy, P. (2004). Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576, 174-178   DOI   PUBMED   ScienceOn
78 Rappuoli, R. (2007). Bridging the knowledge gaps in vaccine design. Nat. Biotechnol. 25, 1361-1366   DOI   PUBMED   ScienceOn
79 Ridderstad, A., and Tarlinton, D.M. (1998). Kinetics of establishing the memory B cell population as revealed by CD38 expression. J. Immunol. 160, 4688-4695   PUBMED
80 Barton, G.M., and Medzhitov, R. (2003). Toll-like receptor signaling pathways. Science 300, 1524-1525   DOI   PUBMED   ScienceOn
81 Unterholzner, L., and Bowie, A.G. (2008). The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem. Pharmacol. 75, 589-602   DOI   ScienceOn
82 Deml, L., Schirmbeck, R., Reimann, J., Wolf, H., and Wagner, R. (1997). Recombinant human immunodeficiency Pr55gag viruslike particles presenting chimeric envelope glycoproteins induce cytotoxic T-cells and neutralizing antibodies. Virology 235, 26-39   DOI   PUBMED   ScienceOn
83 Diebold, S.S. (2008). Recognition of viral single-stranded RNA by Toll-like receptors. Adv. Drug Deliv. Rev. 60, 813-823   DOI   PUBMED   ScienceOn
84 Koyama, S., Ishii, K.J., Kumar, H., Tanimoto, T., Coban, C., Uematsu, S., Kawai, T., and Akira, S. (2007). Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 179, 4711-4720   DOI   PUBMED
85 den Dunnen, J., Gringhuis, S.I., and Geijtenbeek, T.B. (2008). Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol. Immunother. DOI 10.1007/s00262-008-0615-1   DOI   ScienceOn
86 Auewarakul, P., Kositanont, U., Sornsathapornkul, P., Tothong, P., Kanyok, R., and Thongcharoen, P. (2007). Antibody responses after dose-sparing intradermal influenza vaccination. Vaccine 25, 659-663   DOI   PUBMED   ScienceOn
87 Bachmann, M.F., Zinkernagel, R.M., and Oxenius, A. (1998). Immune responses in the absence of costimulation: viruses know the trick. J. Immunol. 161, 5791-5794   PUBMED
88 Kaech, S.M., Wherry, E.J., and Ahmed, R. (2002). Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251-262   DOI   PUBMED   ScienceOn
89 Meyer-Bahlburg, A., Khim, S., and Rawlings, D.J. (2007). B cellintrinsic TLR signals amplify but are not required for humoral immunity. J. Exp. Med. 204, 3095-3101   DOI   PUBMED   ScienceOn
90 Pasare, C., and Medzhitov, R. (2005). Control of B-cell responses by Toll-like receptors. Nature 438, 364-368   DOI   PUBMED   ScienceOn
91 Kwissa, M., Kasturi, S.P., and Pulendran, B. (2007). The science of adjuvants. Expert Rev. Vaccines 6, 673-684   DOI   PUBMED   ScienceOn
92 Sancho, D., Gomez, M., and Sanchez-Madrid, F. (2005). CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 26, 136-140   DOI   PUBMED   ScienceOn
93 Palese, P., Muster, T., Zheng, H., O'Neill, R., and Garcia-Sastre, A. (1999). Learning from our foes: a novel vaccine concept for influenza virus. Arch. Virol. Suppl. 15, 131-138   PUBMED
94 Buonaguro, L., Monaco, A., Arico, E., Wang, E., Tornesello, M.L., Lewis, G.K., Marincola, F.M., and Buonaguro, F.M. (2008). Gene expression profile of peripheral blood mononuclear cells in response to HIV-VLPs stimulation. BMC Bioinformatics 9, S5   DOI   PUBMED   ScienceOn
95 Lin, L., Gerth, A.J., and Peng, S.L. (2004). CpG DNA redirects class-switching towards 'Th1-like' Ig isotype production via TLR9 and MyD88. Eur. J. Immunol. 34, 1483-1487   DOI   PUBMED   ScienceOn
96 Pasare, C., and Medzhitov, R. (2004). Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6, 1382-1387   DOI   PUBMED   ScienceOn
97 Persing, D.H., Coler, R.N., Lacy, M.J., Johnson, D.A., Baldridge, J.R., Hershberg, R.M., and Reed, S.G. (2002). Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32-7   DOI   ScienceOn
98 Rappuoli, R. (2004). From Pasteur to genomics: progress and challenges in infectious diseases. Nat. Med. 10, 1177-1185   DOI   PUBMED   ScienceOn
99 Shin, D., Yang, C.S., Lee, J.Y., Lee, S.J., Choi, H.H., Lee, H.M., Yuk, J.M., Harding, C.V., and Jo, E.K. (2008). Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C $\zeta$ in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol. 10, 1893-1905   DOI   PUBMED   ScienceOn
100 Markine-Goriaynoff, D., van der Logt, J.T., Truyens, C., Nguyen, T.D., Heessen, F.W., Bigaignon, G., Carlier, Y., and Coutelier, J.P. (2000). IFN-$\gamma$-independent IgG2a production in mice infected with viruses and parasites. Int. Immunol. 12, 223-230   DOI   PUBMED   ScienceOn
101 Pashine, A., Valiante, N.M., and Ulmer, J.B. (2005). Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 11, S63-68   DOI   PUBMED   ScienceOn
102 Hai, R., Martinez-Sobrido, L., Fraser, K.A., Ayllon, J., Garcia-Sastre, A., and Palese, P. (2008). Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J. Virol. 82, 10580-10590   DOI   PUBMED   ScienceOn
103 Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801   DOI   PUBMED   ScienceOn
104 Akira, S. (2006). TLR signaling. Curr. Top Microbiol. Immunol. 311, 1-16   DOI
105 Gatto, D., Pfister, T., Jegerlehner, A., Martin, S.W., Kopf, M., and Bachmann, M.F. (2005). Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1. J. Exp. Med. 201, 993-1005   DOI   PUBMED   ScienceOn
106 Mansson, A., Adner, M., Hockerfelt, U., and Cardell, L.O. (2006). A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology 118, 539-548   PUBMED
107 McHeyzer-Williams, L.J., and McHeyzer-Williams, M.G. (2005). Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487-513   DOI   PUBMED   ScienceOn
108 Nemazee, D., Gavin, A., Hoebe, K., and Beutler, B. (2006). Immunology: Toll-like receptors and antibody responses. Nature 441, E4; discussion E4   DOI   PUBMED   ScienceOn
109 Kawai, T., and Akira, S. (2007). TLR signaling. Semin. Immunol. 19, 24-32   DOI   PUBMED   ScienceOn
110 Quan, F.S., Compans, R.W., Nguyen, H.H., and Kang, S.M. (2008a). Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J. Virol. 82, 1350-1359   DOI   PUBMED   ScienceOn
111 Pulendran, B., and Ahmed, R. (2006). Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849-863   DOI   PUBMED   ScienceOn
112 Coutelier, J.P., van der Logt, J.T., Heessen, F.W., Warnier, G., and Van Snick, J. (1987). IgG2a restriction of murine antibodies elicited by viral infections. J. Exp. Med. 165, 64-69   DOI   PUBMED
113 Lee, H.K., Dunzendorfer, S., Soldau, K., and Tobias, P.S. (2006). Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity 24, 153-163   DOI   PUBMED   ScienceOn
114 Ochsenbein, A.F., Pinschewer, D.D., Odermatt, B., Carroll, M.C., Hengartner, H., and Zinkernagel, R.M. (1999). Protective T cellindependent antiviral antibody responses are dependent on complement. J. Exp. Med. 190, 1165-1174   DOI   PUBMED