• Title/Summary/Keyword: vaccine adjuvants

Search Result 48, Processing Time 0.036 seconds

Recent Advances of Vaccine Adjuvants for Infectious Diseases

  • Lee, Sujin;Nguyen, Minh Trang
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.

Improved immune responses and safety of foot-and-mouth disease vaccine containing immunostimulating components in pigs

  • Choi, Joo-Hyung;You, Su-Hwa;Ko, Mi-Kyeong;Jo, Hye Eun;Shin, Sung Ho;Jo, Hyundong;Lee, Min Ja;Kim, Su-Mi;Kim, Byounghan;Lee, Jong-Soo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.74.1-74.13
    • /
    • 2020
  • Background: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. Objectives: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. Methods: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. Results: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. Conclusions: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.

Identification of Molecular Signatures from Different Vaccine Adjuvants in Chicken by Integrative Analysis of Microarray Data

  • Kim, Duk Kyung;Won, Kyeong Hye;Moon, Seung Hyun;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1044-1051
    • /
    • 2016
  • The present study compared the differential functions of two groups of adjuvants, Montanide incomplete Seppic adjuvant (ISA) series and Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) formulations, in chicken by analyzing published microarray data associated with each type of vaccine adjuvants. In the biological function analysis for differentially expressed genes altered by two different adjuvant groups, ISA series and QCDC formulations showed differential effects when chickens were immunized with a recombinant immunogenic protein of Eimeria. Among the biological functions, six categories were modified in both adjuvant types. However, with respect to "Response to stimulus", no biological process was modified by the two adjuvant groups at the same time. The QCDC adjuvants showed effects on the biological processes (BPs) including the innate immune response and the immune response to the external stimulus such as toxin and bacterium, while the ISA adjuvants modified the BPs to regulate cell movement and the response to stress. In pathway analysis, ISA adjuvants altered the genes involved in the functions related with cell junctions and the elimination of exogenous and endogenous macromolecules. The analysis in the present study could contribute to the development of precise adjuvants based on molecular signatures related with their immunological functions.

Raman Detection of Protein Interfacial Conformations

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.352-355
    • /
    • 1997
  • The surface adsorbed protein conformations onto the vaccine adjuvants were observed with a Raman spectroscopy by using the maximum adsorption conditions described previously. The adsorbed state Raman vibrational spectra and subsequent spectral analysis display no conformational changes for BSA or IgG relative to their native species in solution.

  • PDF

The Evolution and Value of Diphtheria Vaccine (디프테리아 백신의 진화와 물리화학적, 분자생물학적, 면역학적 지식의 진보에 따른 새로운 백신의 개발에 관한 고찰연구)

  • Bae, Kyung-Dong
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.491-504
    • /
    • 2011
  • This review article provides an overview of the evolution of diphtheria vaccine, its value and its future. Diphtheria is an infectious illness caused by diphtheria toxin produced by pathogenic strains of Corynebacterium diphtheriae. It is characterized by a sore throat with membrane formation due to local tissue necrosis, which can lead to fatal airway obstruction; neural and cardiac damage are other common complications. Diphtheria vaccine was first brought to market in the 1920s, following the discovery that diphtheria toxin can be detoxified using formalin. However, conventional formalin-inactivated toxoid vaccines have some fundamental limitations. Innovative technologies and approaches with the potential to overcome these limitations are discussed in this paper. These include genetic inactivation of diphtheria toxoid, innovative vaccine delivery systems, new adjuvants (both TLR-independent and TLR-dependent adjuvants), and heat- and freeze-stable agents, as well as novel platforms for producing improved conventional vaccine, DNA vaccine, transcutaneous (microneedle-mediated) vaccine, oral vaccine and edible vaccine expressed in transgenic plants. These innovations target improvements in vaccine quality (efficacy, safety, stability and consistency), ease of use and/or thermal stability. Their successful development and use should help to increase global diphtheria vaccine coverage.

Development of Vaccine Delivery System and Challenges (백신 전달기술 개발 동향과 과제)

  • Jung, Hyung-Il;Kim, Jung-Dong;Kim, Mi-Roo;Dangol, Manita
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.497-506
    • /
    • 2010
  • Vaccine is a protective clinical measure capable of persuading immune system against infectious agents. Vaccine can be categorized as live attenuated and inactivated. Live attenuated vaccines activate immunity similar to natural infection by replicating living organisms whereas inactivated vaccines are either whole cell vaccines, eliciting immune response by killed organisms,or subunit vaccines, stimulating immunity by non-replicating sub cellular parts. The components of vaccine play a critical role in deciding the immune response mediated by the vaccine. The innate immune responds against the antigen component. Adjuvants represent an importantcomponent of vaccine for enhancing the immunogenicity of the antigens. Subunit vaccines with isolated fractions of killed and recombinant antigens are mostly co-administered with adjuvants. The delivery system of the vaccine is another essential component to ensurethat vaccine is delivered to the right target with right dosage form. Furthermore, vaccine delivery system ensures that the desired immune response is achieved by manipulating the optimal interaction of vaccine and adjuvantwith the immune cell. The aforementioned components along with routes of administration of vaccine are the key elements of a successful vaccination procedure. Vaccines can be administered either orally or by parenteral routes. Many groups had made remarkable efforts for the development of new vaccine and delivery system. The emergence of new vaccine delivery system may lead to pursue the immunization goals with better clinical practices.

Application of zebrafish as a model for evaluation of vaccine efficacy against Philasterides dicentrarchi (Ciliphora: Scuticociliatia)

  • Lee, Eun-Hye;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Zebrafish was firstly applied to an experimental model for scuticociliatosis caused by Philasterides dicentrarchi, a facultative parasitic ciliate in cultured marine fish. The susceptibility of zebrafish to infection of P. dicentrarchi was assessed by intraperitoneal injection of the ciliates, which produced typical symptoms of scuticociliatosis and significant mortality. The potential use of zebrafish as a model to evaluate the vaccine efficacy against scuticociliatosis was analyzed by immunization of zebrafish with the ciliates lysate. Furthermore, the effect of different adjuvants, such as Quillaja saponin (QS), Montanide, and Freund’s incomplete adjuvant (FIA) on the protective efficacy of the vaccine was investigated. Groups of zebrafish injected with QS or Montanide alone showed higher survival of fish against challenge test compared to control fish. The results suggest that adjuvant-mediated enhancement of innate immune responses play important roles in protection of fish against scuticociliatosis. The considerably high survival in the fish immunized with the antigen alone indicates that the ciliate lysate itself is highly immunogenic to zebrafish, which can elicit protective immune responses. The protective potential of the antigen, ciliate lysate, was enforced through combined administration with adjuvants including QS, Montinide and FIA. No or low mortalities in the groups of fish immunized with the antigen plus adjuvants suggests that the adaptive immune responses of zebrafish might be accelerated by the adjuvants or the protective potential of the antigen and adjuvants might synergistically interact. In spite of several shortcomings such as difficulties in sampling of serum and leucocytes enough to routine immunological analyses, zebrafsih might be the most convenient experimental animal for scuticociliatosis.

Protective Efficacy and Immunogenicity of Rv0351/Rv3628 Subunit Vaccine Formulated in Different Adjuvants Against Mycobacterium tuberculosis Infection

  • Kee Woong Kwon;Tae Gun Kang;Ara Lee;Seung Mo Jin;Yong Taik Lim;Sung Jae Shin;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.16.1-16.19
    • /
    • 2023
  • Bacillus Calmette-Guerin (BCG) vaccine is the only licensed vaccine for tuberculosis (TB) prevention. Previously, our group demonstrated the vaccine potential of Rv0351 and Rv3628 against Mycobacterium tuberculosis (Mtb) infection by directing Th1-biased CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs. Here, we assessed immunogenicity and vaccine potential of the combined Ags (Rv0351/Rv3628) formulated in different adjuvants as subunit booster in BCG-primed mice against hypervirulent clinical Mtb strain K (Mtb K). Compared to BCG-only or subunit-only vaccine, BCG prime and subunit boost regimen exhibited significantly enhanced Th1 response. Next, we evaluated the immunogenicity to the combined Ags when formulated with four different types of monophosphoryl lipid A (MPL)-based adjuvants: 1) dimethyldioctadecylammonium bromide (DDA), MPL, and trehalose dicorynomycolate (TDM) in liposome form (DMT), 2) MPL and Poly I:C in liposome form (MP), 3) MPL, Poly I:C, and QS21 in liposome form (MPQ), and 4) MPL and Poly I:C in squalene emulsion form (MPS). MPQ and MPS displayed greater adjuvancity in Th1 induction than DMT or MP did. Especially, BCG prime and subunit-MPS boost regimen significantly reduced the bacterial loads and pulmonary inflammation against Mtb K infection when compared to BCG-only vaccine at a chronic stage of TB disease. Collectively, our findings highlighted the importance of adjuvant components and formulation to induce the enhanced protection with an optimal Th1 response.

Enhanced mucosal and systemic immune responses by mucosally administered hepatitis B surface antigen: effects of vaccine delivery vehicles and adjuvants

  • Park, Jeong-Sook;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.121-121
    • /
    • 2003
  • The purpose of this study is to investigate the effect of mucosal vaccine delivery vehicles and adjuvants on the local and systemic antibody responses following mucosal immunization of mice with hepatitis B surface antigen (HBsAg). Mice were immunized on days 0 and 21 by administration of hepatitis B surface antigen B (HBsAg) into the vagina. HBsAg was delivered in saline or poloxamer(Pol)-based vehicle containing mucoadhesive polycarbophil (PC). (omitted)

  • PDF

Immunogenic characterization of AlPO4 adsorbed Td vaccine and liposome-mediated Td vaccine

  • Remees Shuhsadhe;Junise Vazhayil;Heyam Saad Ali;Hiba Orsud;Ahmed Elmontaser Omer Mergani
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.232-239
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the antigenic potency and stability of tetanus and diphtheria (Td) vaccines when combined with aluminum phosphate (AlPO4) and liposome adjuvants. Materials and Methods: In vitro and in vivo analyses were conducted using the single radial immunodiffusion method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Td vaccines were prepared with AlPO4 adsorption and liposome-mediated delivery, and protein antigens were characterized using these methods. Results: The results revealed that the liposome-mediated Td vaccines exhibited higher immunogenicity compared to the AlPO4-adsorbed Td vaccines. Additionally, the liposome-mediated Td vaccines demonstrated higher stability as native antigens. Conclusion: This study highlights the importance of utilizing liposome adjuvants in vaccine development. The liposome-mediated Td vaccines showed enhanced immunogenicity and stability, making them a promising approach for improving vaccine efficacy. Understanding and optimizing adjuvant strategies can contribute to the development of effective vaccines against various diseases.