Application of zebrafish as a model for evaluation of vaccine efficacy against Philasterides dicentrarchi (Ciliphora: Scuticociliatia)

  • Lee, Eun-Hye (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Ki-Hong (Department of Aquatic Life Medicine, Pukyong National University)
  • Published : 2009.04.01

Abstract

Zebrafish was firstly applied to an experimental model for scuticociliatosis caused by Philasterides dicentrarchi, a facultative parasitic ciliate in cultured marine fish. The susceptibility of zebrafish to infection of P. dicentrarchi was assessed by intraperitoneal injection of the ciliates, which produced typical symptoms of scuticociliatosis and significant mortality. The potential use of zebrafish as a model to evaluate the vaccine efficacy against scuticociliatosis was analyzed by immunization of zebrafish with the ciliates lysate. Furthermore, the effect of different adjuvants, such as Quillaja saponin (QS), Montanide, and Freund’s incomplete adjuvant (FIA) on the protective efficacy of the vaccine was investigated. Groups of zebrafish injected with QS or Montanide alone showed higher survival of fish against challenge test compared to control fish. The results suggest that adjuvant-mediated enhancement of innate immune responses play important roles in protection of fish against scuticociliatosis. The considerably high survival in the fish immunized with the antigen alone indicates that the ciliate lysate itself is highly immunogenic to zebrafish, which can elicit protective immune responses. The protective potential of the antigen, ciliate lysate, was enforced through combined administration with adjuvants including QS, Montinide and FIA. No or low mortalities in the groups of fish immunized with the antigen plus adjuvants suggests that the adaptive immune responses of zebrafish might be accelerated by the adjuvants or the protective potential of the antigen and adjuvants might synergistically interact. In spite of several shortcomings such as difficulties in sampling of serum and leucocytes enough to routine immunological analyses, zebrafsih might be the most convenient experimental animal for scuticociliatosis.

Keywords

References

  1. Dragesco, A., Dragesco, J., Coste, F., Gasc, C., Romestand, B., Raymond, J. et al.: Philasterides dicentrarchi, n. sp. (Ciliophora, Scuticociliatida), a histophagous opportunistic parasite of Dicentrachus labrax (Linnaeus. 1758), a reared marine fish. Eur. J. Protistol., 31: 327-340, 1995
  2. Garner, J.N., Joshi, B. and Jagus, R.: Characterization of rainbow trout and zebrafish eukaryotic initiation factor 2 alpha and its response to endoplasmic reticulum stress and IPNV infection. Dev. Comp. Immunol., 27: 217-231, 2003 https://doi.org/10.1016/S0145-305X(02)00096-4
  3. Harriff, M.J., Bermudez, L.E. and Kent, M.L.: Experimental exposure of zebrafish, Danio rerio (Hamilton), to Mycobacterium marinum and Mycobacterium peregrinum reveals the gastrointestinal tract as the primary route of infection: a potential model for environmental mycobacterial infection. J. Fish Dis., 30: 587-600, 2007 https://doi.org/10.1111/j.1365-2761.2007.00839.x
  4. Iglesias, R., Param$\acute{a}$, A., $\acute{A}$lvarez, M.F., Leiro, J., Fern$\acute{a}$ndez, J. and Sanmart$\acute{i}$n, M.L.: Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Dis. Aquat. Org., 46: 47-55, 2001 https://doi.org/10.3354/dao046047
  5. Iglesias, R., Param$\acute{a}$, A., $\acute{A}$lvarez, M.F., Leiro, J. and Sanmart$\acute{i}$n, M.L.:Antiprotozoals effective in vitro against the scuticociliate fish pathogen Philasterides dicentrarchi. Dis. Aquat. Org., 49: 191-197, 2002 https://doi.org/10.3354/dao049191
  6. Iglesias, R., Param$\acute{a}$, A., $\acute{A}$lvarez, M.F., Leiro, J., Ubeira, F.M. and Sanmart$\acute{i}$n, M.L.: Philasterides dicentrarchi(Ciliophora: Scuticociliatida) expresses surface immobilization antigens that probably induce protective immune responses in turbot. Parasitol., 126: 125-134, 2003 https://doi.org/10.1017/S0031182002002688
  7. Kim, S.M., Cho, J.B., Kim, S.K., Nam, Y.K. and Kim, K.H.:Occurrence of scuticociliatosis in olive flounder Paralichthys olivaceus by Philasterides dicentrarchi (Ciliophora: Scuticociliatida). Dis. Aquat. Org., 62: 233-238, 2004 https://doi.org/10.3354/dao062233
  8. Koppang, E.O., Haugarvoll, E., Hordvik, I., Poppe, T.T. and Bjerk s,I.: Granulomatous uveitis associated with vaccination in Atlantic salmon. Vet. Pathol., 41: 122-130, 2004 https://doi.org/10.1354/vp.41-2-122
  9. Koppang, E.O., Haugarvoll, E., Hordvik, I., Aune, L. and Poppe, T.T.: Vaccine-associated granulomatous inflammation and melanin accumulation in Atlantic salmon, Salmo salar L., white muscle. J. Fish Dis., 28: 13-22, 2005 https://doi.org/10.1111/j.1365-2761.2004.00583.x
  10. LaPatra, S.E., Barone, L., Jones, G.R. and Zon, L.I.: Effects of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus infection on hematopoietic precursors of the zebrafish. Blood Cells Mol. Dis., 26: 445-452, 2000 https://doi.org/10.1006/bcmd.2000.0320
  11. Lee, E.H. and Kim, K.H.:Immobilization antigenindependent protection of olive flounder (Paralichthys olivaceus) against Philasterides dicentrarchi (Ciliophora: Scuticociliatia) infection. Aquaculture, 279: 211-213, 2008 https://doi.org/10.1016/j.aquaculture.2008.03.045
  12. Lin, B., Chen, S., Cao, Z., Lin, Y., Mo, D., Zhang, H., et al.: Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. Mol. Immunol., 44: 295-301, 2007 https://doi.org/10.1016/j.molimm.2006.03.001
  13. Lu, M.W., Chao, Y.M., Guo, T.C., Santi, N., Evensen, O., Kasani, S.K., et al.: The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol. Immunol., 45: 1146-1152, 2008 https://doi.org/10.1016/j.molimm.2007.07.018
  14. Meijer, A.H., Verbeek, F.J., Salas-Vidal, E., Corredor-Adamez, M., Bussman, J., van der Sar, A.M., et al.: Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol. Immunol., 42: 1185-1203, 2005 https://doi.org/10.1016/j.molimm.2004.11.014
  15. Moyer, T.R. and Hunnicutt, D.W.:Susceptibility of zebra fish Danio rerio to infection by Flavobacterium columnare and F. johnsoniae. Dis. Aquat. Org., 76: 39-44, 2007 https://doi.org/10.3354/dao076039
  16. Neely, M.N., Pfeifer, J.D. and Caparon, M.: Streptococcus-zebrafish model of bacterial pathogenesis. Infect. Immun., 70: 3904-3914, 2002 https://doi.org/10.1128/IAI.70.7.3904-3914.2002
  17. Novoa, B., Romero, A., Mulero, V., Rodriguez, I., Fernandez, I. and Figueras, A.: Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine, 24:5806-5816, 2006 https://doi.org/10.1016/j.vaccine.2006.05.015
  18. O'Toole, R., Von Hofsten, J., Rosqvist, R., Olsson, P.E. and Wolf-Watz, H.: Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb. Pathog. 37: 41-46, 2004 https://doi.org/10.1016/j.micpath.2004.03.001
  19. Param$\acute{a}$, A., Piazzon, M.C., Lamas, J., Sanmart$\acute{i}$n, M.L. and Leiro, J.: In vitro activity of the nonsteroidal anti-inflammatory drug indomethacin on a scuticociliate parasite of farmed turbot. Vet. Parasitol., 148: 318-324, 2007 https://doi.org/10.1016/j.vetpar.2007.06.018
  20. Phelan, P.E., Pressley, M.E., Witten, P.E., Mellon, M.T., Blake, S. and Kim, C.H.: Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio). J. Virol., 79: 1842-1852, 2005 https://doi.org/10.1128/JVI.79.3.1842-1852.2005
  21. Pressley, M.E., Phelan, P.E., Witten, P.E., Mellon, M.T. and Kim, C.H.: Pathogenesis and inflammatory response to Edwardsiella tardainfection in the zebrafish. Dev. Comp. Immunol., 29: 501-513, 2005 https://doi.org/10.1016/j.dci.2004.10.007
  22. Prouty, M.G., Correa, N.E., Barker, L.P., Jagadeeswaran, P. and Klose, K.E.: Zebrafish-Mycobacterium marinum model for mycobacterial pathogenesis. FEMS Microbiol. Lett., 225: 177-182, 2003 https://doi.org/10.1016/S0378-1097(03)00446-4
  23. Quintela, J.M., Peinador, C., Gonzalez, L., Iglesias, R., Parama, A., Alvarez, F., et al.:Piperazine N-substituted naphthyridines, pyridothienopyrimidines and pyridothienotriazines: new antiprotozoals active against Philasterides dicentrarchi. Eur. J. Med. Chem., 38: 265-275, 2003 https://doi.org/10.1016/S0223-5234(03)00032-1
  24. Rodr$\acute{i}$guez, I., Novoa, B. and Figueras, A.: Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol., 25: 239-249, 2008 https://doi.org/10.1016/j.fsi.2008.05.002
  25. Rojo, I., de Ilarduya, O.M., Estonba, A. and Pardo, M.A.: Innate immune gene expression in individual zebrafish after Listonella anguillarum inoculation. Fish Shellfish Immunol., 23: 1285-1293, 2007 https://doi.org/10.1016/j.fsi.2007.07.002
  26. Sanders, G.E., Batts, W.N. and Winton, J.R.:Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp. Med., 53: 514-521, 2003
  27. Sanmartín, M.L., Paramá, A., Castro, R., Cabaleiro, S., Leiro, J., Lamas, J. and Barja, J.L.: Vaccination of turbot, Psetta maxima (L.), against the protozoan parasite Philasterides dicentrarchi: effects on antibody production and protection. J. Fish Dis., 31: 135-140, 2008
  28. Sitj$\grave{a}$-Bobadilla, A., Palenzuela, O. and Alvarez-Pellitero, P.: Immune response of turbot, Psetta maxima (L.) (Pisces: Teleostei), to formalinkilled scuticociliates (Ciliophora) and adjuvanted formulations. Fish Shellfish Immunol., 24: 1-10, 2008 https://doi.org/10.1016/j.fsi.2007.06.007
  29. Swaim, L.E., Connolly, L.E., Volkman, H.E., Humbert, O., Born, D.E. and Ramakrishnan, L.: Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun., 74: 6108-6117, 2006 https://doi.org/10.1128/IAI.00887-06
  30. Wang, L., Wang, L., Zhang, H.X., Zhang, J.H., Chen, W.H., Ruan, X.F., et al.: In vitroeffects of recombinant zebrafish IFN on spring viremia of carp virus and infectious hematopoietic necrosis virus. J. Interferon Cytokine Res., 26: 256-259, 2006 https://doi.org/10.1089/jir.2006.26.256
  31. Watral, V. and Kent, M.L.: Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 145: 55-60, 2007 https://doi.org/10.1016/j.cbpc.2006.06.004
  32. Xu, X., Zhang, L., Weng, S., Huang, Z., Lu, J., Lan, D., et al.: A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection. Virology, 376: 1-12, 2008 https://doi.org/10.1016/j.virol.2007.12.026