• Title/Summary/Keyword: utility-connected

Search Result 198, Processing Time 0.022 seconds

Making Utility-Integrated Energy Storage a Used, Useful and Universal Resource

  • Doosan GridTech
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Objective signs are everywhere that the stationary energy storage market is growing up quickly. The use of distributed resources such as solar photovoltaics and electric vehicles are expanding at a rapid pace, creating technical challenges for the distribution system that will require energy storage and a new generation of software to address. This paper is intended for distribution utility managers and executives and makes the following points: ${\bullet}$ Utility-integrated (as opposed to merely grid-connected) energy storage projects represent a distinct, new wave of industry growth that is just getting underway and is required to manage distributed energy resources moving forward. ${\bullet}$ Utilities and the energy storage industry have important roles to lower risk in adopting this technology - thereby enabling this wave of growth. ${\circ}$ The industry must focus on engineering energy storage for adoption at scale - including the creation and support of software open standards -both to drive down costs and to limit technology and supplier risk for utilities. ${\circ}$ Utilities need to take a program-based, rather than a project- based, approach to this resource to best balance cost and risk as they procure and implement energy storage. By working together to drive down costs and manage risk, utilities and their suppliers can lay the energy storage foundation for a new, more digital distributed electricity system.

The Instantaneous Phase-Tracking in PLL using the DFT Algorithm (DFT 알고리즘을 이용한 PLL의 순시 추종)

  • Kim, Youn-Seo;Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.141-148
    • /
    • 2008
  • An utility voltage information, including the frequency, phase angle and amplitude is very important in many industrial systems. The grid-connected photovoltaic system in the limelight as alternative energy needs utility voltage information such as frequency, phase angle and magnitude to connect the grid-line. In this paper, it proposes the instantaneous phase-tracking in PLL that uses the frequency from the utility voltage as a sync signal and locks the phase with compensation for phase difference from DPT algorithm. It also proposes not only DFT algorithm execution by every sample not by one period, but also phase-tracking method in a wide range of frequency not a fixed one. This paper shows the feasibility and the usefulness of the proposed methods through the computer simulation and the experiment.

A Protection Algorithm of Grid-Interactive Photovoltaic System Considering Operation Characteristics of Recloser (리클로져의 동작특성을 고려한 계통연계형 태양광발전시스템의 보호 알고리즘)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.280-286
    • /
    • 2006
  • The paper proposes a new protection algorithm for reliable operation of grid-interfaced PV system, which can flexibly interact with conventional protective schemes of power utility grid not only to prevent damages to utility or public persons and utility apparatus caused by malfunction or failure in distribution network protection system, but also to protect a PV system itself from faults or abnormal conditions of the network. The proposed algorithm is based on reclosing characteristics of the distribution system. As a network fault occurs, the new scheme determines whether it is momentary or permanent and responds in a pre-programmed way to the fault. For permanent outage, the proposed algorithm shuts down inverter's operations but monitoring system voltage and frequency at the point of common coupling with grid. When it comes to the momentary outage, Inverter starts stand-by operation mode so that it can be automatically connected to the grid without start-up procedures as soon as the system voltage and frequency returns into the normal operation range. In order to investigate' and evaluate the PV system operation, simulation study based on PSCAD/EMTDC has been carried out to verify the performance of the proposed protection scheme.

A Control Method and Test Results of Utility-Interactive Photovoltaic Power Generation Systems (계통연계 태양광발전시스템의 제어기법 및 연계운전특성)

  • 황인호;안교상;임희천;김신섭
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.123-129
    • /
    • 2000
  • This paper desclibes a design method and test results of grid-connected photovoltaic power 당eneration s systems, which consists of solar cells, DCI AC inverter, utility grid. A 50 kW photovoltaic power generation s system including a 3-phase DCI AC inverter is designed and made in order to investigate the system l pelionnance for glid connection. Also the control scheme of a three phase cmrent-controlled PWM inverter W with PI controller is presented by using d-q transformation. The experimental waveforms show that the p proposed system has stable behavior with em unit power factor in utility-interactive operation.

  • PDF

Smoothing Output Power Variations of Isolated Utility Connected Multiple PV Systems by Coordinated Control

  • Datta, Manoj;Senjyu, Tomonobu;Yona, Atsushi;Sekine, Hideomi;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.320-333
    • /
    • 2009
  • A Photovoltaic (PV) system's power output varies with the change of climate. Frequency deviations, tie line voltage swings are caused by the varying PV power when large PV power from several PV systems is fed in the utility. In this paper, to overcome these problems, a simple coordinated control method for smoothing the variations of combined PV power from multiple PV systems is proposed. Here, output power command is formed in two steps: central and local. Fuzzy control is used to produce the central smoothing output power command considering insolation, variance of insolation and absolute average of frequency deviation. In local step, a simple coordination is kept between the central power command and the local power commands by producing a common tuning factor. Power converters are used to achieve the same output power as local command power employing PI control law for each of the PV generation systems. The proposed method is compared with the method where conventional Maximum Power Point Tracking (MPPT) control is used for each of the PV systems. Simulation results show that the proposed method is effective for smoothing the output power variations and feasible to reduce the frequency deviations of the power utility.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

A Hybrid Anti-islanding Detection Scheme for Utility Interactive Inverter with Enhanced Harmonic Extraction Capability (향상된 고조파 검출 능력을 갖는 계통연계 인버터의 하이브리드 단독운전 방지기법)

  • Kang, Sung-Wook;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.312-319
    • /
    • 2014
  • When distributed generation such as a wind power system is connected to the grid, it should meet grid requirements like IEEE Std. 1547, which regulates the anti-islanding method. Since the islanding may cause damage on electrical equipments or safety hazards for utility line worker, a distributed generation should detect it as soon as possible. This paper proposes a hybrid anti-islanding method coupled with the active and passive detection methods. To enhance the harmonic extraction capability for an active harmonic injection method, cascaded second-order band-pass filter and signal processing scheme are employed. Simulation and experiments are carried out under the islanding test condition specified in IEEE Std. 1547. Passive over/under voltage and over/under frequency methods are combined with the active method to improve the detection speed under certain condition. The simulation and experimental results are presented to verify that the proposed hybrid anti-islanding method can effectively detect the islanding.

Seamless Mode Transfer of Utility Interactive Inverters Based on Indirect Current Control

  • Lim, Kyungbae;Song, Injong;Choi, Jaeho;Yoo, Hyeong-Jun;Kim, Hak-Man
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.254-264
    • /
    • 2019
  • This paper proposes an indirect current control technique based on a proportional resonant (PR) approach for the seamless mode transfer of utility interactive inverters. Direct-current and voltage hybrid control methods have been used for inverter control under grid-connected and islanded modes. A large bandwidth can be selected due to the structure of single-loop control. However, this results in poor dynamic transients due to sudden changes of the controller during mode changes. Therefore, inverter control based on indirect current is proposed to improve the dynamic transients by consistently controlling the output voltage under all of the operation modes. A PR-based indirect current control topology is used in this study to maintain the load voltage quality under all of the modes. The design processes of the PR-based triple loop are analyzed in detail while considering the system stability and dynamic transients. The mode transfer techniques are described in detail for both sudden unintentional islanding and islanded mode voltage quality improvements. In addition, they are described using the proposed indirect control structure. The proposed method is verified by the PSiM simulations and laboratory-scale VDER-HILS experiments.

Voltage quality and Network Interconnection Standard Suitability in Jeju-Hangwon Wind Power Generation Farm (제주행원 풍력발전단지의 전압품질 및 연계기준 적합성 분석)

  • Kim, Se-Ho;Kim, Eel-Hwan;Huh, Jonhg-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.53-59
    • /
    • 2006
  • The number of wind generation installations are growing substantially in Jeju, Korea. Many of these installations are significant in size and directly connected to the distribution system. Utility grid interconnection standards for interconnecting non-utility distributed generation systems are essential to both power system company and generation company. These interconnection standards are important to utilities, customers, wind generation manufactures and nation. In this paper, it is investigated the voltage quality and the suitability of Jeju-Hangwon wind power generation farm by network interconnection technology standard.

Utility scale solar power development in Nepal

  • Adhikari, Rashmi
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.86-91
    • /
    • 2020
  • Nepal is among the richest in terms of water resource availability and it is one of the most important natural resources of the country. Currently, 72% of the population is electrified through the national grid system. The power generation mix into the grid is hydro dominated with minor shares generated from solar and thermal (accounts for less than 1%). To achieve sustainable development in the power sector it is essential to diversify power generation mix into the grid. Knowing the facts, the government has a plan to achieve a 5-10% share of power generation from solar and mix it into the grid system. Solar is the second most abundant, prominent and free source of renewable in the context of Nepal. This study mainly focuses on the grid-connected solar system, its importance, present status, government efforts, and its need. It is based on the review of literature, news published in national newspaper online news and international organization's report.