스카이라인 질의(Skyline Query)는 객체의 다중 속성을 기준으로 사용자 선호에 적합한 대상을 탐색하는 기법이다. 기존 스카이라인 질의는 탐색 결과를 일괄처리(batch processing)로 반환하지만, 대화형 앱이나 모바일 환경의 등장으로 실시간 탐색 결과의 필요성이 증가하였다. 스카이라인을 위한 온라인 알고리즘(online algorithm)은 객체의 반환 속도를 향상해 실시간으로 선호 객체를 제공한다. 하지만 객체 탐색 과정에서 기존에 탐색한 영역을 재방문하여 반복 비교하는 불필요한 연산 시간이 소요된다. 본 논문은 온라인 알고리즘에서 불필요한 탐색 시간을 제거하여 스카이라인 질의 결과를 실시간으로 제공하기 위한 스카이라인 온라인 전처리 알고리즘을 제안한다. 제안 기법은 기존의 온라인 알고리즘에서 전처리를 수행함으로써 반복적으로 재탐색 되는 영역을 미리 제거하여 탐색 성능을 향상하였다. 실험 결과, 기존 온라인 알고리즘과 비교 시 이산 데이터 집합의 표준 분포, 편향 분포, 양의 상관 및 음의 상관분포에서 향상된 성능을 보였다. 제안 기법은 비교 대상을 최소화하여 탐색 성능을 향상하므로 모바일 장치의 사용이 증가하는 현실에서 사용자들에게 신속한 서비스를 제공할 수 있는 새로운 기준이 될 것이다.
정보 통신 및 인공지능 기술의 발전은 우리 군의 지휘통제체계의 지능화를 요구하며, 이를 달성하기 위해 다양한 시도가 이루어지고 있다. 본 논문은 특히, 지휘통제 워크플로우에서 활용 가능한 정보의 양이 폭발적으로 증가함에 따라 지휘통제체계 사용자에게 제공되는 정보 중 수행 업무에 가장 핵심적인 정보를 제공할 수 있는 협업 필터링(Collaborative Filtering, CF) 및 추천 시스템(Recommendation System, RS)에 주목한다. 군 지휘통제체계에서 정보의 필터링을 수행하는 RS는 가장 우선 설명 가능한 추천을 수행하여야 하며, 그 다음 지휘관들이 임무를 수행하는 다양한 상황을 고려한 추천이 수행되어야 한다. 본 논문에서는 지휘통제 워크플로우를 지원하기 위하여 정보를 선택적으로 추천하는 contextual pre-filtering CARS 프레임워크를 제안한다. 제안된 프레임워크는 1) 지휘결심자의 상황 및 관계에 기반하여 데이터를 사전에 필터링하는 contextual pre-filtering, 2) CF의 취약한 데이터 희소성 문제를 극복하기 위한 피쳐 선택, 3) 피쳐 간의 디스턴스를 사용자의 유사도 산출에 활용한 CF, 및 4) 사용자의 선호를 반영하기 위한 규칙 기반 포스트 필터링의 4 단계로 구성되어 있다. 본 연구의 우수성을 평가하기 위해서 상용 수준의 실험 데이터셋 2종에 대해 기존 CF 방법의 다양한 디스턴스 방법을 적용하여 비교 실험하였다. 비교 실험 결과 제안된 프레임워크가 3가지 평가지표(MAE, MSE, MSLE) 측면에서 우수함을 나타내었다.
디지털 기술의 발전으로 브랜드와 소비자 간 커뮤니케이션 방식이 혁신적으로 변화하고 있다. 이러한 변화의 일환으로, 나이키와 아디다스와 같은 스포츠 브랜드들은 자체 러닝 앱을 통해 소비자들과 상호작용을 강화하고, 브랜드 경험을 통한 충성도 강화에 노력하고 있다. 하지만 이러한 브랜드 자체 플랫폼이 충성도 및 옹호도에 미치는 직접적 영향과 개선점에 대한 심도 깊은 연구는 더 많이 필요한 상황이다. 이에 본 연구는 2020년 1월부터 2023년 10월까지의 나이키 런 클럽(NRC)과 아디다스 런타스틱 앱 영어 리뷰 3,715건을 텍스트 마이닝 기법으로 분석하고, 브랜드 플랫폼이 소비자 충성도와 옹호에 끼치는 영향을 살펴보고자 하였다. 특히 '추천 리뷰' 155건에 대해 감성 분석 및 토픽모델링으로 심층 비교 분석하여, '핫 로열티'를 일으키는 이유와 두 브랜드에 대한 소비자 인식의 차이점을 찾고자 하였다. 그 결과 NRC는 개인화된 코칭과 감성적 교류를 제공하는 '동반자'로, 아디다스 런타스틱은 기능적 신뢰성에 초점을 맞춘 '도구'로 인식되는 차이를 발견했다. 이는 유사 기능의 앱에 대해서도 브랜드 별 소비자 인식과 성향은 다양할 수 있음을 시사하며, 브랜드 관리자는 이러한 차이를 플랫폼 디자인 및 기획에 세심하게 반영해야 함을 강조한다. 더불어, 기술적 오류가 브랜드에 대한 부정적 인식으로 직접 이어지는 경향이 공통적으로 확인되어, 앱 성능 개선과 관리의 중요성을 부각시킨다. 본 연구는 브랜드별 소비자 성향 파악과 그에 따른 맞춤 기술 도입이 브랜드 충성도와 옹호에 영향을 끼친다는 점을 실질적 데이터를 기반으로 보였다는 점에서 기존 연구 및 실무에 새로운 통찰과 실행 가이드 제공으로 기여한다.
추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.
본 연구는 골프장의 경기력과 운영관리 향상을 위한 평가지표들을 개발하고자 수행되었으며, 연구결과를 요약하면 다음과 같다. 이론연구 및 전문가 예비설문을 통해 가정된 골프장 조성 및 운영관리 15개 중간평가지표, 55개 하위평가지표 체계가 성립되지 않고 최종적으로 환경친화성, 회원서비스 수준, 진행원의 인적서비스 수준, 코스의 난이도, 코스관리수준, 운영관리 공정성, 접근성 및 입지성, 클럽의 전통성 및 클럽의 분위기, 코스의 우수성, 코스레이아웃 등 10개의 중가 평가지표 및 52개 하위평가지표로 재구성되었다. 골프장 이용자 선호도 평가지표의 중요도 결정요인을 분석한 결과, 코스의 관리수준, 포스의 우수성, 진행원의 인적서비스 수준, 코스레이아웃, 환경친화성 순으로 기여도가 높게 나타났다. 골프장 평가지표의 경로계수를 파악한 결과, 코스레이아웃 부문에서는 홀의 굴곡과 코스길이의 순으로 인과효과의 크기가 나타났다. 코스의 우수성에는 토너멘트 진행시설, 다양한 샷 밸류(shot value)의 순으로, 운영관리 공정성에는 대기의 편리성, 예약의 공정한 배정 등의 순으로 인과관계가 높게 나타났다. 클럽의 전통성 부분은 골프코스의 역사 및 환경적 특성, 지역의 역사문화가, 접근성 및 입지성과 관련해서는 지리적 조건이, 환경친화성에서는 농약 및 비료유출량, 수질오염 등이, 회원서비스 수준에서는 회원혜택과 직원의 친절한 응대 등이 상대적으로 인과효과의 크기가 높은 지표로 나타났다. 경기진행원의 인적서비스 수준 분야에서는 경기진행원의 친절한 응대, 경기진행원의 전문지식 정도가, 코스의 난이도 부분은 티잉 에어리어(Terming area)의 위치, 오비(Out of Bounds: OB) 및 해저드(Hazard) 말뚝 위치의 순으로 코스의 관리수준에는 러프상태 및 장애물 관리상태 등이 상대적으로 인과효과가 높았던 지표들로 나타났다. 향후 보다 세부적인 평가지표들을 도출하는 후속연구를 통해 골프장 이용자 선호도 평가지표 체계 모델을 완성하고, 국내외 골프장을 대상으로 평가지표들을 현장 적용하고 검증해 보는 과정이 뒷받침될 필요가 있다.
본 연구의 목적은 지하철 이용자의 지하철 표지 여백에 대한 특성의 군집그룹별 선호도를 파악하는 것이다. 세부적으로 성별, 연령 등의 특성에 따라 지하철 표지 여백에 대한 특성을 다양하게 디자인하는 개념을 도입하는 것을 목적으로 한다. 본 연구는 지하철 표지 여백에 대한 특성의 선호도를 조사하고 전체그룹과 군집그룹별 선호도를 분석하였다. 선호도 조사를 위해 설문조사를 실시하였으며, 선호도 분석을 위해 군집분석을 실시하고 전체그룹과 군집그룹의 인구통계학적 분석과 컨조인트 분석을 실시하였다. 선호도 조사를 위한 지하철 표지 여백에 대한 특성의 속성은 상하여백, 측여백, 테두리선 여백, 화살표 두께, '역명'과 '호선번호' 순서로 설정하였다. 선호도 분석 결과는 다음과 같다. 전체그룹에서 속성의 중요도는 테두리선 여백, '역명'과 '호선번호' 순서, 측여백, 상하여백, 화살표 두께 순으로 나타났다. 군집그룹은 총 3개의 그룹으로, 1군집은 지하철을 거의 매일, 일주일에 3~4회 이용하는 여성으로, 글자의 1/2 측여백을 선호하는 것으로 나타났다. 2군집은 60대 이상의 지하철 표지를 불편하다고 생각하는 이용자로, 테두리가 없는 것과 '역명'+'호선번호' 순서를 선호하는 것으로 나타났다. 3군집은 20대와 30대의 남성으로, 글자의 1/5 테두리선 여백과 얇은 화살표 두께를 선호하는 것으로 나타났다. 결론은 다음과 같다. 첫째, 지하철 표지 여백에 대한 특성을 일관성 있게 디자인 해야하지만, 특정지역 혹은 노선에 대해서 성별, 연령별, 지하철 이용횟수에 따라 다양하게 고려할 필요성이 제시되었다. 둘째, 특정지역 혹은 노선에 따라서는 지하철 표지 여백에 대한 특성의 표지를 표준화된 한 가지 유형이 아닌 두 가지 이상의 유형의 디자인이 가능함을 보여주었다.
차세대 웹인 모바일 웹에 대한 멀티미디어 서비스 욕구는 PC수준이 될 것이며, 이를 지원할 수 있는 단말기 제작 기술, 통신 기술, 서비스 및 표준화 노력들이 진행되고 있다. 모바일 웹 환경에서는 다양한 단말기 종류, 네트워크 능력 및 사용자 선호등을 지원하여 멀티미디어 컨텐츠의 적응 서비스가 가능하도록 하여야 한다. 이것은 목적지인 단말기의 하드웨어 사양과 재생서비스 품질의 다양성으로 인하여 멀티미디어 컨텐츠의 재생 서비스 품질이 고정되어 있지 않음을 의미한다. 만일 새로운 사용자가 새로운 종류의 단말기를 통하여 서버의 멀티미디어 컨텐츠를 재생하려고 한다면, 기존 트랜스코더로 멀티미디어 적응이 가능한지 고려하여야 한다. 그런데 현재 사용되는 멀티미디어 적응 라이브러리들은 하나의 라이브러리에 모든 적응 기능을 넣은 중량 트랜스코더의(heavy transcoder) 형태이다. 이러한 중량 트랜스코더로 제한없는 접속(Universal Access)의 도전을 해결하는 것은 너무 복잡하다. 따라서 본 논문에서는 다양한 새로운 모바일 단말기의 서비스 품질을 만족하는 응용 독립적 멀티미디어 적응 프레임워크를 제안한다. 이것은 중량 트랜스코더대신 하나의 트랜스고딩 기능만을 갖는 단위 트랜스코더들의 집합을 갖는다. 또한 종단간 서비스 품질을 만족하도록 단위 트랜스코더들의 동적 연결을 지원하는 트랜스코더 관리자를 포함한다.
본 논문에서는 개미 군집 최적화 (Ant Colony Optimization; ACO) 및 A* 휴리스틱 알고리즘이 융합된 선호도 기반 경로탐색 알고리즘을 제안한다. 최근 ITS (Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 사용이 증가하면서 경로탐색 알고리즘의 중요성이 더욱 높아지고 있다. 기존의 Dijkstra 및 A*와 같은 대부분의 최단경로 탐색 알고리즘은 최단거리 또는 최단시간 경로 탐색을 목표로 한다. 하지만 이러한 경로 탐색 결과는 더 안전하고 특정 경로를 선호하는 운전자를 위한 최적의 경로가 아니다. 따라서 본 논문에서는 선호도 기반 최단 경로 탐색 알고리즘을 제안한다. 제안된 알고리즘은
주어진 맵의 링크 속성 정보를 이용하며, 각 링크에 대한 사용자 선호도는 내비게이션 사용자에 의해 설정되어 진다. 제안된 알고리즘은 C로 구현하였으며, 64노드 및 118링크로 구성된 맵에서 다양한 파라미터를 통해 성능을 측정한 결과 본 논문에서 제안한 휴리스틱 융합 알고리즘은 선호도 기반 경로뿐만 아니라 최단 경로 탐색에도 적합함을 알 수 있었다.
소프트웨어 에이전트에 의해서, 일상 업무는 자동화 되어왔으며, 그에 따라 사람이 담당하는 업무는 특정 업무범위로 축소되고 있다. 그러나 아직까지 대부분의 에이전트는 전체 업무 프로세스의 일부 단계에서만 그 역할을 수행할 뿐이다. 자동화 업무에서의 주요 단계에서 사용자들을 지원하기 위하여 특정 방향으로 협상 당사자들을 설득하는 데 있어서 소프트웨어 에이전트의 역할은 필수적이다. 사용되는 협상의 종류는 매우 여러 가지 이지만, 본 논문은 '협상에 기초한 경쟁적 비즈니스 환경' 과 같은 특정 협상행위에 중점을 두고 있다. 이러한 환경에서의 협상을 위해서 자율적 에이전트는 환경적 변수(예: 협상 경쟁자 수, 각 협상 참여자 수, 협상업무가 완료되는 최대한의 시간, 사용자의 선호도)를 중점적으로 고려하고 있다. 경쟁적 비즈니스 환경에서는 협상진행 중에 끼어 들어 계약을 성사시키는 잠재 협상 경쟁자들이 있지만 자동화된 협상을 위하여 제안된 이전의 협상 결정함수들은 단지 시간이나 정해진 수의 협상참여자들만을 변수로 사용해왔다. 따라서 본 논문은 경쟁적 시장환경에서 잠재적 경쟁자에 대한 고려가 포함된 협상 결정 함수와 그러한 고려사항이 포함되지 않은 협상 결정 함수에 대한 기능의 평가를 시도했다. 이 평가를 위해서 본 논문은 다수의 구매자와 판매자가 제한된 자원을 위해 한 공간에서 경쟁하는 전자상거래 시장을 적용 범위로 선택했다.
다채널 TV, IPTV 및 Smart TV 서비스의 등장으로 인해 수많은 방송 채널과 방대한 TV 프로그램 콘텐츠가 시청자 단말로 제공됨으로써 시청자들은 자신이 원하는 콘텐츠를 쉽게 찾고 소비하는 것이 어려운 TV 시청 환경을 맞게 되었다. 따라서 TV 사용자들에게 자신이 선호하는 콘텐츠를 자동 추천해 줌으로써 원하는 콘텐츠로의 접근성을 증대시키는 것은 미래의 지능형 TV 서비스에 있어서 주요한 이슈이다. 이에 본 논문에서는 사용자의 선호 취향과 대중의 선호취향을 모두 고려한 협업필터링 개념의 통계적 기계학습 기반 TV 프로그램 추천 모델을 제시한다. 이를 위해 시청한 TV 콘텐츠에 대한 선호 토픽을 사용자의 시청 선호도로 보고, 최근 널리 활용되고 있는 LDA(Latent Dirichlet Allocation)모델을 TV 프로그램 추천 모델에 적용하였다. LDA 기반 TV 프로그램 추천 성능을 개선하기 위해 본 논문에서는 TV시청 이용내역 데이터를 기반으로, TV 사용자들의 관심 토픽을 은닉 변수로 하고, TV 사용자들의 관심 토픽에 대한 다양성을 반영하기 위해 은닉 변수의 확률분포 특성을 비대칭 디리클레(Dirichlet) 분포로 모형화하여 실험에 적용하였다. 제안된 LDA 기반 TV 프로그램 자동 추천 방법의 성능을 검증하기 위해, 유사 시청 특성을 갖는 사용자 그룹에 대해 상위 5개의 TV 프로그램을 일주일 단위로 추천하였을 경우 평균 66.5%, 2개월 단위의 추천에 대해서는 평균 77.9%의 precision 추천 성능을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.