• Title/Summary/Keyword: user's interests

Search Result 170, Processing Time 0.026 seconds

Device-Centered Personalized Product Recommendation Method using Purchase and Share Behavior in E-Commerce Environment (이커머스 환경에서 구매와 공유 행동을 이용한 기기 중심 개인화 상품 정보 추천 기법)

  • Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.85-96
    • /
    • 2022
  • Personalized recommendation technology is one of the most important technologies in electronic commerce environment. It helps users overcome information overload by suggesting information that match user's interests. In e-commerce environment, both mobile device users and smart device users have risen dramatically. It creates new challenges. Our method suggests product information that match user's device interests beyond only user's interests. We propose a device-centered personalized recommendation method. Our method uses both purchase and share behavior for user's devices interests. Moreover, it considers data type preference for each device. This paper presents a new recommendation method and algorithm. Then, an e-commerce scenario with a computer, a smartphone and an AI-speaker are described. The scenario shows our work is better than previous researches.

Extracting Database Knowledge from Query Trees

  • Yoon, Jongpil
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.145-156
    • /
    • 1996
  • Although knowledge discovery is increasingly important in databases, the discovered knowledge sets may not be effectively used for application domains. It is partly because knowledge discovery does not take user's interests into account, and too many knowledge sets are discovered to handle efficiently. We believe that user's interests are conveyed by a query and if a nested query is concerned it may include a user's thought process. This paper describes a novel concept for discovering knowledge sets based on query processing. Knowledge discovery process is performed by: extracting features from databases, spanning features to generate range features, and constituting a knowledge set. The contributions of this paper include the following: (1) not only simple queries but also nested queries are considered to discover knowledge sets regarding user's interests and user's thought process, (2) not only positive examples (answer to a query) but also negative examples are considered to discover knowledge sets regarding database abstraction and database exceptions, and (3) finally, the discovered knowledge sets are quantified.

  • PDF

Extracting Database Knowledge from Query Trees

  • 윤종필
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.146-146
    • /
    • 1996
  • Although knowledge discovery is increasingly important in databases, the discovered knowledge sets may not be effectively used for application domains. It is partly because knowledge discovery does not take user's interests into account, and too many knowledge sets are discovered to handle efficiently. We believe that user's interests are conveyed by a query and if a nested query is concerned it may include a user's thought process. This paper describes a novel concept for discovering knowledge sets based on query processing. Knowledge discovery process is performed by: extracting features from databases, spanning features to generate range features, and constituting a knowledge set. The contributions of this paper include the following: (1) not only simple queries but also nested queries are considered to discover knowledge sets regarding user's interests and user's thought process, (2) not only positive examples (answer to a query) but also negative examples are considered to discover knowledge sets regarding database abstraction and database exceptions, and (3) finally, the discovered knowledge sets are quantified.

PAS: Personalized Research Agent System using Modified Spreading Neural Network

  • Cho, Young-Im
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.1-146
    • /
    • 2001
  • The researches of science and engineering need the latest information from internet resources. But searching and filtering processes of appropriate web documents from huge internet resources are very complex as well as having some repeated procedures. In this paper, I propose a Personalized Agent System(PAS), which can filter World Wide Web Documents that the user is interested, such as papers. To do this, PAS uses a modified spreading activation neural network which 1 propose here. PAS observes the user´s local paper database to analyze, adapt and learn the user interests, and the then constructs the user-specified neural network model by the analyzed interests ...

  • PDF

An Adaptive Approach to Learning the Preferences of Users in a Social Network Using Weak Estimators

  • Oommen, B. John;Yazidi, Anis;Granmo, Ole-Christoffer
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.191-212
    • /
    • 2012
  • Since a social network by definition is so diverse, the problem of estimating the preferences of its users is becoming increasingly essential for personalized applications, which range from service recommender systems to the targeted advertising of services. However, unlike traditional estimation problems where the underlying target distribution is stationary; estimating a user's interests typically involves non-stationary distributions. The consequent time varying nature of the distribution to be tracked imposes stringent constraints on the "unlearning" capabilities of the estimator used. Therefore, resorting to strong estimators that converge with a probability of 1 is inefficient since they rely on the assumption that the distribution of the user's preferences is stationary. In this vein, we propose to use a family of stochastic-learning based Weak estimators for learning and tracking a user's time varying interests. Experimental results demonstrate that our proposed paradigm outperforms some of the traditional legacy approaches that represent the state-of-the-art technology.

Personalized Agent Modeling by Modified Spreading Neural Network

  • Cho, Young-Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • Generally, we want to be searched the newest as well as some appropriate personalized information from the internet resources. However, it is a complex and repeated procedure to search some appropriate information. Moreover, because the user's interests are changed as time goes, the real time modeling of a user's interests should be necessary. In this paper, I propose PREA system that can search and filter documents that users are interested from the World Wide Web. And then it constructs the user's interest model by a modified spreading neural network. Based on this network, PREA can easily produce some queries to search web documents, and it ranks them. The conventional spreading neural network does not have a visualization function, so that the users could not know how to be configured his or her interest model by the network. To solve this problem, PREA gives a visualization function being shown how to be made his interest user model to many users.

Extraction Method of Multi-User's Common Interests Using Facebook's 'like' List (페이스북의 '좋아요' 리스트를 이용해 다중 공통 관심사항을 추출하는 기법)

  • Lim, Yeonju;Park, Sangwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.6
    • /
    • pp.269-276
    • /
    • 2015
  • The today's rapid spread of smartphones makes it easier to use SNS. However, it reveals only their daily life or interest. Therefore, it is hard to really get to know the detailed part of multi-user's common interests. This paper proposes a content recommendation system which recommends people wanted by identifying common interests through SNS. Recommendation system includes proposal formula considering people wanted and deviation in group. After simulation, the proposed system provide high-quality adapted contents to many users by recommendation item according to the common interest. Number of cases about formula are four. It recommend contents that they have many number of 'like' and few number of deviation in users. The proposed system proves by simulations of four cases and read user's 'likes' data. It provide high-quality adapted contents to many users by recommendation item according to the common interest.

The Method for Recommend of Contact Area According to the User's SLA(S-RCA) based on a Moving Path Prediction Service (이용자의 과거 위치 정보와 이용자별 SLA(Sevice Level Agreement)를 지원하는 동적 예측서비스 기반의 접촉 지역 추천(S-RCA) 기법)

  • Cho, Kyeong Rae;Lee, Jee Hyong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.41-54
    • /
    • 2013
  • In this paper, We collected location based services of the user's past moving paths through the GPS. Using the collected by location-based services through the analysis of the similarity between the user's of service level agreement recommended of mobile contact area(SLA) proposed that can be. S-RCA method based on Service Level Agreement of the users in order to provide the service user's path distance, time, and to predict the direction of the movement paths and collect. The data collected by the interests and requirements of users through classification with the same interests and the needs of users to move between the analysis of the similarity between the path is used to analyze the results of analysis of the path-specific tolerance range (distance, time, and space) is determined according to the difference in the contact area. From a small area of the error range for users first to recommended and through their smartphones recommended contact area (S-RCA) to meet with the other party to make a choice of recommended methods. We verify through experiments that proposed method(S-RCA) a valid and reliable mobile contact area were recommended.

A Dynamic Management Method for FOAF Using RSS and OLAP cube (RSS와 OLAP 큐브를 이용한 FOAF의 동적 관리 기법)

  • Sohn, Jong-Soo;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.39-60
    • /
    • 2011
  • Since the introduction of web 2.0 technology, social network service has been recognized as the foundation of an important future information technology. The advent of web 2.0 has led to the change of content creators. In the existing web, content creators are service providers, whereas they have changed into service users in the recent web. Users share experiences with other users improving contents quality, thereby it has increased the importance of social network. As a result, diverse forms of social network service have been emerged from relations and experiences of users. Social network is a network to construct and express social relations among people who share interests and activities. Today's social network service has not merely confined itself to showing user interactions, but it has also developed into a level in which content generation and evaluation are interacting with each other. As the volume of contents generated from social network service and the number of connections between users have drastically increased, the social network extraction method becomes more complicated. Consequently the following problems for the social network extraction arise. First problem lies in insufficiency of representational power of object in the social network. Second problem is incapability of expressional power in the diverse connections among users. Third problem is the difficulty of creating dynamic change in the social network due to change in user interests. And lastly, lack of method capable of integrating and processing data efficiently in the heterogeneous distributed computing environment. The first and last problems can be solved by using FOAF, a tool for describing ontology-based user profiles for construction of social network. However, solving second and third problems require a novel technology to reflect dynamic change of user interests and relations. In this paper, we propose a novel method to overcome the above problems of existing social network extraction method by applying FOAF (a tool for describing user profiles) and RSS (a literary web work publishing mechanism) to OLAP system in order to dynamically innovate and manage FOAF. We employed data interoperability which is an important characteristic of FOAF in this paper. Next we used RSS to reflect such changes as time flow and user interests. RSS, a tool for literary web work, provides standard vocabulary for distribution at web sites and contents in the form of RDF/XML. In this paper, we collect personal information and relations of users by utilizing FOAF. We also collect user contents by utilizing RSS. Finally, collected data is inserted into the database by star schema. The system we proposed in this paper generates OLAP cube using data in the database. 'Dynamic FOAF Management Algorithm' processes generated OLAP cube. Dynamic FOAF Management Algorithm consists of two functions: one is find_id_interest() and the other is find_relation (). Find_id_interest() is used to extract user interests during the input period, and find-relation() extracts users matching user interests. Finally, the proposed system reconstructs FOAF by reflecting extracted relationships and interests of users. For the justification of the suggested idea, we showed the implemented result together with its analysis. We used C# language and MS-SQL database, and input FOAF and RSS as data collected from livejournal.com. The implemented result shows that foaf : interest of users has reached an average of 19 percent increase for four weeks. In proportion to the increased foaf : interest change, the number of foaf : knows of users has grown an average of 9 percent for four weeks. As we use FOAF and RSS as basic data which have a wide support in web 2.0 and social network service, we have a definite advantage in utilizing user data distributed in the diverse web sites and services regardless of language and types of computer. By using suggested method in this paper, we can provide better services coping with the rapid change of user interests with the automatic application of FOAF.

Human-Content Interface : A Friction-Based Interface Model for Efficient Interaction with Android App and Web-Based Contents

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2021
  • In this paper, we propose a human-content interface that allows users to quickly and efficiently search data through friction-based scrolling with ROI(Regions of interests). Our approach, conceived from the behavior of finding information or content of interest to users, efficiently calculates ROI for a given content. Based on the kernel developed by conceiving from GMM(Gaussian mixture model), information is searched by moving the screen smoothly and quickly to the location of the information of interest to the user. In this paper, linear interpolation is applied to make one softer inertia, and this is applied to scrolls. As a result, unlike the existing approach in which information is searched according to the user's input, our method can more easily and intuitively find information or content that the user is interested in through friction-based scrolling. For this reason, the user can save search time.