• Title/Summary/Keyword: used steel pipe support

Search Result 19, Processing Time 0.03 seconds

The Development of Aluminum Pipe Support for Apartment Slabs(I) (공동주택 슬래브의 알루미늄 파이프서포트 개발에 관한 연구(I))

  • Cha, Jung-Koo;Yi, Young-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.105-110
    • /
    • 2012
  • Steel elements are widely used for temporary structures on every construction site. but despite its strong resistences against heavy concrete volumes, they are easily eroded by oxygens in the space as times have been gone. If they are used several times in the construction fields, their elements are rusted and deformed and the strength is gradually reduced through the weak part. From this point of view, aluminum pipe support has been developed in stead of steel pipe sopport with enhancing durability against oxygens all the more. The developed aluminium pipe support has been lighter than steel unit, so workability has been improved. In another advantage of aluminium pipe support, different level control is possible with being equipped with the level control nut which enables the length adjustment of aluminium pipe support and the collapse of aluminum pipe support could be also prevented from the structures in the long term.

Behavior of deep excavation system supported by steel pipe struts (강관버팀보 적용 흙막이 시스템 거동 특성)

  • Yoo, Chung-Sik;Na, Seung-Min;Lee, Jong-Goo;Kang, Dong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.811-818
    • /
    • 2010
  • This paper presents the results of a numerical investigation on behavior of deep excavation wall system supported by steel pipe struts. A series of three-dimensional finite element analyses were carried out on a deep excavation project site which adopted steel pipe struts. The results indicated that the mechanical behavior of steel pipe supported deep excavation is comparable to that of a conventional H-pile supported deep excavation, although the steel pipe supported system is required less number of struts than the conventional H-pile strut system. Also shown is that the sectional stresses of the steel pipe support system are within the allowable values implying that the steel pipe support system can be effectively used as an alternative to conventional H-pile support system.

  • PDF

A Experimental Study on Performance Improvement Factors of Used V4 Steel Pipe Support (재사용 V4 강재 파이프 서포트의 성능향상 요인에 관한 실험적 연구)

  • Choi, Myeongki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.43-48
    • /
    • 2020
  • It is considered that most of reusable pipe supports, which are used as formwork support posting at construction sites, do not meet the performance standard. Due to the use of reusable pipe supports that do not meet such performance standard the potential risk of collapse accident is increasing. Therefore, this study identifies the status of compliance with performance standard, and presents the requirements for improving quality control to prevent the collapse of pipe supports reused at the construction site. First, if the female thread of the product with no clearance and new support pin with the diameter of 12mm are replaced at the same time for use, it is considered that the performance will be improved. Second, as the quality performance during use can be improved in the case of larger thickness of inner diameter compared to the case of larger thickness of outer diameter, it is necessary to increase the inner pipe thickness greatly than the current thickness. Based on the results of this study, it is expected that the performance the reusable pipe support (V4) can be improved, if the diameter of the support pin is 12mm, the female thread has a small clearance, and the inner tube thickness is 2.3 ~ 2.7mm. In addition, it is considered that other performance improvement factors included in the study results could be used as important data for improving the performance of reusable pipe support.

Numerical Investigation on the Behavior of Braced Excavation Supported by Steel Pipe Struts (강관버팀보 흙막이 시스템의 거동 특성에 관한 수치해석적 연구)

  • Yoo, Chung-Sik;Na, Seung-Min;Lee, Jong-Goo;Jang, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.45-56
    • /
    • 2010
  • This paper presents the results of a numerical investigation on the behavior of deep excavation wall system supported by steel pipe struts. A series of three-dimensional finite element analyses were carried out on a braced excavation case which adopted steel pipe struts. The results indicated that the mechanical behavior of the steel pipe supported braced excavation is comparable to that of a conventional H-pile supported excavation, although the steel pipe supported system allows a larger longitudinal spacing than the conventional H-pile strut system. Also shown is that the sectional stresses of the steel pipe support system are within the allowable values. This implies that the steel pipe support system can be effectively used as an alternative to conventional H-pile support system.

A Proposed method of the Strength Calculation of Pipe Support (파이프 서포트의 내력 산정 방안)

  • 이영욱;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Even though there is a guideline for the required strength of pipe support in inspection, it does not mean the nominal strength which can be used for the form work design. And, Concrete Specification defines that the pipe support should be designed according to the steel design guidelines but the design details are not provided, such as buckling length and the sectional modulus, etc. For the better prediction of strength of pipe support, the slenderness ratio of support which reflects the boundary condition should be considered. In this paper, the elastic buckling formula based on the slenderness is derived. The formula contains the strength reduction factor that consider the strength deduction caused by initial lateral deformation and is 0.65 consistently regardless of boundary conditions. And the coefficient of effective buckling length is calculated from the experiment.

  • PDF

A Study on the Strength Comparison of Steel Pipe Support using the Structural Analysis Program (구조해석에 의한 파이프서포트의 내력비교에 관한 연구)

  • Paik, Shin-Won;Park, Jong-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.67-71
    • /
    • 2008
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Slab formwork consists of sheathing, stringer, hanger and shore. In construction site, pipe supports are usually used as shores which are consisted of the slab formwork. In this study, compressive strength of 80 pipe supports was measured by knife edge test and plate test. Buckling load of pipe supports was analyzed by structural analysis program(MlDAS). Theoretical buckling load with/without initial deformation was got by theoretical analysis. According to these results, buckling load which was analyzed by structural analysis program(MlDAS) was larger than compressive strength of knife edge test and plate test. Theoretical buckling load without initial deformation was larger than compressive strength of knife edge test and plate test. But Theoretical buckling load with initial deformation was lower than compressive strength of knife edge test and plate test. Initial deformation equation for test method according to the pipe support length was suggested. Therefore, the present study results will be used to design the slab formwork safely.

The supporting effect of pipe wing rib designed to achieve early contact between ground and steel arch tunnel support

  • Kinoshita Yasunori;Shinji Masato;Nakagawa Koji;Yamamoto Minoru
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.103-108
    • /
    • 2003
  • In the construction of mountain tunnels, reaction forces of the legs of steel arch supports against the ground are often expected to support the ground being excavated. In these cases, a stress concentration occurs in the ground directly under the support legs. If the bearing capacity of the ground is insufficient or displacement is not effectively constrained, the local failure of the ground under the support legs or settlement of the tunnel supports due to large deformation could result. It is therefore necessary to reinforce the support legs to reduce settlement. As a means of reducing settlement, wing-ribbed steel arch supports are well used. In this study, with the aim of finding a way to quickly reduce the settlement of steel arch support legs, effectiveness of a new type of wing ribs to reinforce steel arch supports was investigated through laboratory testing.

  • PDF

A Study for Evaluation of Performance and Influence Factors for Steel Pipe Supports ( I ) (강제파이프서포트의 성능평가 및 영향요인에 대한 연구( I ))

  • Hwang Jung-Hyun;Shin Sang-Tae;Yun Sang-Moon;Kim Kyung-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.139-146
    • /
    • 2004
  • Recently, interest on the performance of the construction temporary equipment have been greatly increased. Since the application of the 'Performance Test Code' for the equipment in 1992 according to the Industrial Safety and Health Act, a basic study of Steel Pipe Supports have been carried out for the last 2 years based on the Performance Test Results. The present code specification for the Steel Pipe Supports and research status are introduced. So far, total 849 specimen have been examined on their outer and inner pipe's length, thickness, their overlapping length, and their load carrying capacities. The test was conducted separately into two groups - used and new equipment, and it was found that the used ones revealed a decrease on their load carrying capacity, almost $10\%$ compared to the new ones. Considering this fact, it is strongly recommended to ensure the quality of the equipment before use at the jobsite. First of all, based on this basic investigation, the statistical values on the Steel Pipe Supports are suggested and further analysis on the effect of each component is in progress. It is, however, expected that this report can be used as a basic information on the Steel Pipe Supports.

Comparison of the Fire Resistance Performance of Firestop Systems on Non-Metallic Pipes, Based on the Type of Through-Penetration Sleeve Used (비금속관 설비관통부의 슬리브 종류에 따른 내화성능 비교)

  • Jeong, A-Yeong;Choi, Hong-Beom;Park, Jin-O;Lee, Hyung-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.301-302
    • /
    • 2023
  • In this study, we aimed to identify changes in fire resistance according to the type of sleeves used for pipe penetrations and to examine their accreditation of fire resistance performance and use them as basic data. The test results of fire resistance according to the type of sleeve used in non-metallic pipe facilities showed that the temperature on the support side was higher for sleeves with higher thermal conductivity. For the temperature on the surface of the pipes, in the case of galvanized steel plates, steel pipes, and structures without sleeves, the highest temperature was observed after the expansion of the firestop material for 46 to 53 minutes and then decreased. PVC sleeves showed a steady increase in temperature until 53 minutes, after which the temperature did not increase further. In addition, for non-metallic pipes, the effect of the type of sleeve on fire resistance is considered to be insignificant because the lower part (heating direction of the furnace) under the support structure is cut off to block the heat during the two-hour fire resistance test.

  • PDF

Determination of structural performance of 3D steel pipe rack suspended scaffolding systems

  • Arslan, Guray;Sevim, Baris;Bekiroglu, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.671-681
    • /
    • 2017
  • This study investigates the structural performance of 3D steel pipe rack suspended scaffolding systems. For the purpose, a standard full scale 3D steel pipe rack suspended scaffolding system considering two frames, two plane trusses, purlins and wooden floor is constructed in the laboratory. A developed load transmission system was placed in these experimental systems to distribute single loads to the center of a specific area in a step-by-step manner using a load jack. After each load increment, the displacements are measured by means of linear variable differential transducers placed in several critical points of the system. The tests are repeated for five different system conditions to determine the structural performance. The means of system conditions is the numbers of the tie bars which are used to connect plane trusses under level. Finite elements models of the 3D steel pipe rack suspended scaffolding systems considering different systems conditions are constituted using SAP2000 software to support the experimental tests and to use the models in future studies. Each of models including load transmission platform is analyzed under a single loading and the displacements are obtained. In addition, to calibrate the numerical models some uncertain parameters such as elasticity modulus of wooden floor and connection rigidity of purlins to plane trusses are assessed experimentally. The results of this work demonstrate that when increasing numbers of tie bars the displacement values are decreased. Also the results obtained from developed numerical models have harmony with those of experimental. In addition, the scaffolding system with two tie bars at the beginning and at the end of the plane truss has the optimum structural performance compared the results obtained for other scaffolding system conditions.