• Title/Summary/Keyword: use of visual representation

Search Result 96, Processing Time 0.023 seconds

A Study on the Visual Representation in Mathematics Education (수학교육에서 시각적 표현에 관한 소고)

  • 이대현
    • The Mathematical Education
    • /
    • v.42 no.5
    • /
    • pp.637-646
    • /
    • 2003
  • Visual representation is very important topic in Mathematics Education since it fosters understanding of Mathematical concepts, principles and rules and helps to solve the problem. So, the purpose of this paper is to analyze and clarify the various meaning and roles about the visual representation. For this purpose, I examine the status of the visual representation. Since the visual representation has the roles of creatively mathematical activity, we emphasize the using of the visual representation in teaching and learning. Next, I examine the errors in relation to the visual representation which come from limitation of the visual representation. It suggests that students have to know conceptual meaning of the visual representation when they use the visual representation. Finally, I suggest some examples of problem solving via the visual representation. This examples clarify that the visual representation gives the clues and solution of problem solving. Students can apprehend intuitively and easily the mathematical concepts, principles and rules using the visual representation because of its properties of finiteness and concreteness. So, mathematics teachers create the various visual representations and show students them. Moreover, mathematics teachers ask students to design the visual representation and teach students to understand the conceptual meaning of the visual representation.

  • PDF

Analysis of Elementary Science Lesson Plans on Shadow Principle - Focusing on the Types and Cognitive Processes of Visual Representations - (그림자 원리에 대한 초등 과학 수업 지도안 분석 - 시각적 표상의 유형과 인지 과정을 중심으로 -)

  • Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.1
    • /
    • pp.26-39
    • /
    • 2020
  • Visual Representation Competence Taxonomy (VRC-T) was developed in previous study(Yoon, 2018) to provide a framework conducive to assess visual representation competence and to devise appropriate educational activities for it. This study is an extension of the previous study. It aimed to explore the usefulness of VRC-T and revise it by analyzing the patterns of visual representation use in science lessons. The researcher collected lesson plans on shadow principle from 11 pre-service and 13 in-service elementary teachers and conducted individual interviews regarding what visual representations they considered and how they tried to use them in science lessons. VRC-T was used as an analytical framework to examine the types and cognitive processes of visual representations. As a result, new categories were added and the revised VRC-T was completed (VRC-TR). It was also found that both pre- and in-service teachers mainly focused on 'interpreting' the 'descriptive representation' while designing their lesson plans. Additionally, in-service teachers showed more limited use of visual representations compared to pre-service teachers. In-service teachers largely relied on the national science textbooks, while pre-service teachers reflected their own learning experiences in their teacher-training program. These results showed that teachers' use of visual representations heavily relied on their prior learning and teaching experiences. The VRC-TR presented in this study and examples of class activities in each category can be helpful for teachers and researchers who want to use visual representations more effectively.

Elementary School Teachers' Use of Visual Representations and their Perceptions of the Functions of Visual Representations (초등교사의 시각적 표상 활용 실태 및 시각적 표상의 기능에 대한 인식)

  • Yoon, Hye-Gyoung;Park, Jisun
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.219-231
    • /
    • 2018
  • This study surveyed the elementary school teachers' use of visual representations and their perceptions of the functions of visual representations in the teaching of electricity unit. A total of 110 elementary teachers who have experiences in teaching electricity unit responded to online survey. The result showed firstly that most of the teachers use visual representations in their teaching and it is mostly limited to those presented in textbooks or images that they can get easily from internet search. Secondly, elementary teachers thought that they have high ability in using visual representations and low ability in understanding students' visual presentation ability. Thirdly, visual representations are more often preferred to be used as teacher-centered ways than student-centered ways for motivating students and conceptual understanding. However, in case of scientific inquiry, both teacher-centered and student-centered ways were equally preferred. Lastly, the teachers' perceptions of the functions of visual representations were categorized into 'teaching-instrumental function', 'learning-instrumental function', 'communicative-instrumental function' and 8 subcategories were found. The most frequent function was the 'information delivery function' in the 'teaching-instrumental function' category. Implications for teacher education and further studies were discussed.

A Study on the Factors and Effect of Immediacy in Intuition (직관의 즉각성 요인과 효과에 대한 고찰)

  • Lee Dae-Hyun
    • The Mathematical Education
    • /
    • v.45 no.3 s.114
    • /
    • pp.263-273
    • /
    • 2006
  • The purpose of this paper is to research the factors and the effects of immediacy in mathematics teaching and learning and mathematical problem solving. The factors of immediacy are visualization, functional fixedness and representatives. In special, students can apprehend immediately the clues and solution using the visual representation because of its properties of finiteness and concreteness. But the errors sometimes originate from visual representation which come from limitation of the visual representation. It suggests that students have to know conceptual meaning of the visual representation when they use the visual representation. And this phenomenon is the same in functional fixedness and representatives which are the factors of immediacy The methods which overcome the errors of immediacy is that problem solvers notice the limitation of the factors of immediacy and develop the meta-cognitive ability. And it means we have to emphasize the logic and the intuition in mathematical teaching and learning. Clearly, we can't solve all mathematical problems using only either the logic or the intuition.

  • PDF

Development and Validation of Visual Representation Competence Taxonomy (과학 교수 학습을 위한 시각적 표상 능력의 교육목표 분류체계 개발 및 타당화)

  • Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.161-170
    • /
    • 2018
  • Various forms of visual representations enable scientific discovery and scientific reasoning when scientists conduct research. Similarly, in science education, visual representations are important as a means to promote students' understanding of science concepts and scientific thinking skills. To provide a framework that could facilitate the effective use of visual representations in science classroom and systemic science education research, a visual representation competence taxonomy (VRC-T) was developed in this study. VRC-T includes two dimensions: the type of visual representation, and the cognitive process of visual representation. The initial categories for each dimension were developed based on literature review. Then validation and revision was made by conducting teachers' workshop and survey to experts. The types of visual representations were grouped into 3 categories (descriptive, procedural, and explanative representations) and the cognitive processes were grouped into 3 categories (interpretation, integration, and construction). The sub categories of each dimension and the validation process would be explained in detail.

A Didactic Analysis of Prospective Elementary Teachers' Representation of Trapezoid Area (예비초등교사의 사다리꼴 넓이 표상에 대한 교수학적 분석)

  • Lee Jonge-Uk
    • The Mathematical Education
    • /
    • v.45 no.2 s.113
    • /
    • pp.177-189
    • /
    • 2006
  • This study focuses on the analysis of prospective elementary teachers' representation of trapezoid area and teacher educator's reflecting in the context of a mathematics course. In this study, I use my own teaching and classroom of prospective elementary teachers as the site for investigation. 1 examine the ways in which my own pedagogical content knowledge as a teacher educator influence and influenced by my work with students. Data for the study is provided by audiotape of class proceeding. Episode describes the ways in which the mathematics was presented with respect to the development and use of representation, and centers around trapezoid area. The episode deals with my gaining a deeper understanding of different types of representations-symbolic, visual, and language. In conclusion, I present two major finding of this study. First, Each representation influences mutually. Prospective elementary teachers reasoned visual representation from symbolic and language. And converse is true. Second, Teacher educator should be prepared proper mathematical language through teaching and learning with his students.

  • PDF

The Fourth Graders' Visual Representation in Mathematics Problem Solving Process (초등학교 4학년 학생들의 수학 문제해결과정에서의 시각적 표현)

  • Kim, So Hee;Lee, Kwangho;Ku, Mi Young
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.285-301
    • /
    • 2013
  • The purpose of the study is to analyze the 4th graders' visual representation in mathematics problem solving process and to find out how to teach the visual representation in mathematics problem solving process. on the basis of the results, this study gives several pedagogical implication related to the mathematics problem solving. The following were the conclusions drawn from the results obtained in this study. First, The achievement level of students and using visual representation in the mathematics problem solving are closely connected. High achieving students used visual representation in the mathematics problem solving process more frequently. Second, high achieving students realize the usefulness of visual representation in the mathematics problem solving process and use visual representation to solve mathematical problem. But low achieving students have no conception that visual representation is one of the method to solve mathematical problem. Third, students tend to especially focus on 'setting up an equation' when they solve a mathematical problem. Because they mostly experienced mathematical problems presented by the type of 'word problem-equation-answer'. Fourth even through students tried visual representation to solve a mathematical problem, they could not solve the problem successfully in numerous instances. Because students who face a difficulty in solving a problem try to construct perfect drawing immediately. But generating visual representation 2)to represent mathematical problem cannot be constructed at one swoop.

Analysis of Elementary School Students' Visual Representation Competence for Shadow Phenomenon (그림자 현상에 대한 초등학생의 시각적 표상 능력)

  • Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.295-305
    • /
    • 2019
  • In previous study, visual representation competence taxonomy (VRC-T), which is composed of two dimensions, was developed for the purpose of promoting effective visual representation use and research in science education. In this study, elementary school students' visual representation competence for shadow phenomenon was investigated using VRC-T. In terms of visual representation competence, 'interpretation' was the highest score, followed by 'construction' and 'integration'. It also showed that students' visual representation competence was not high even after learning shadow-related units in the regular curriculum. On the other hand, text-based scientific knowledge was not correlated with all categories of visual representation competence. This indicates that there is a need to emphasize visual representation more in science class. Finally, hierarchical relationship among cognitive processes of VRC-T was explored according to ordering theory. If the tolerance level is somewhat loosened, a linear hierarchical relationship was found between the six cognitive processes. This suggests that VRC-T is an analytical framework that can be useful when designing assessment tools, tasks, and science class activities to enhance visual representation competence.

A Study on the 6th Graders' Use of Visual Representations in Mathematical Problem Solving (수학 문제 해결과정에서 초등학교 6학년 학생들의 시각적 표현에 관한 연구)

  • Hwang, Hyun-Mi;Pang, Jeong-Suk
    • Education of Primary School Mathematics
    • /
    • v.12 no.2
    • /
    • pp.81-97
    • /
    • 2009
  • Visual representations play an important role for students to understand the meaning of a given problem, devise problem-solving approaches, and implement them successfully. The purpose of this study was to investigate how 6th graders would use visual representations in solving mathematical problems and in what ways such use might affect successful problem solving. The results showed that many students preferred numerical expressions to visual representations. However, students who used visual representations, specifically schematic representations, performed better than those who employed numerical representations. Given this, this paper includes instructional implications to nurture students' use of visual representations in a way to increase their problem solving ability.

  • PDF

Visual Sentences for Educational Math Games

  • Chang, Hee-Dong
    • 한국게임학회지
    • /
    • v.8 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • The help or guide sentences of educational math games which use mathematical statements need to represent graphical forms for the learners of the game generation whose cognitive style is graphic first. In this paper, we proposed an object-based visual representation method for mathematical statements. It has object-based description rules to use graphical symbols and mathematical symbols with text words. It is easy to describe or to understand accurately mathematical meaning and is also fast for learners to read for understanding. The proposed method is good for learners of the game generation to get the help as scaffolding for learning math by educational games.

  • PDF