• Title/Summary/Keyword: use of the Internet

Search Result 5,999, Processing Time 0.04 seconds

Questionnaire-based analysis of growth-promoting attempts among children visiting a university growth clinic (대학병원 성장클리닉을 내원한 아동에서 설문 조사를 통한 키성장 관리 실태분석)

  • Huh, Kyoung;Park, Mi Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.576-580
    • /
    • 2009
  • Purpose : Growth-promoting attempts are widespread in Korea, but little is known about their prevalence or associated factors. This study was designed to assess the prevalence of growth-promoting attempts among children visiting a university growth clinic. Methods : A questionnaire-based survey was carried out with 823 children (416 boys, 407 girls) who visited the growth clinic at Paik Hospital. Results : The mean age of the subjects was $10.4{\pm}2.6$ yr, and the height z-score was $-1.58{\pm}0.91$. Approximately 33.4% of the children had tried growth promotion. Among the height-gain methods, herbal medicine was the most frequently used (37.8%), followed by health-promoting supplements (37.1%), exercise or machine (3.0%), and growth hormone treatment (2.9 %). The mean age at which the parents began to worry about their children's height was 7.7 yr. The mean age at which they started height-gain methods was 8.9 yr for herbal medicine, 9.1 yr for health-promoting supplements, 9.4 yr for exercise or machine, and 9.9 yr for growth hormone treatment. Motivating factors included advice from relatives or friends (36.0%), advertisements in the Internet or newspaper (28.4%), advice from pharmacist (16.8%), and advice from their medical doctor (5.5%). The degree of satisfaction from the height-gain methods was 29.1% with growth hormone treatment, 6.6% with exercise or machine, 6.4% with herbal medicine, and 2.8% with growth-promoting supplements. Conclusion : Approximately one third of the children reported use of growth-promoting methods, but the satisfaction rate was not high. The benefits of growth-promoting methods should be carefully weighed against their costs and side effects.

Success Factors of the Supdari(A Wooden Bridge) Restoration in Jeonju-River through Citizens' Initiative (적극적 주민참여를 통한 전통문화시설 복원 성공요인 분석 - 전주천 섶다리 놓기 사업을 중심으로 -)

  • Kim, Sang-Wook;Kim, Gil-Joong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • This paper aims to analyze success factors for the construction of Supdari(a traditional wooden bridge to connect small streams temporarily), which is a citizens' initiative project to revitalize local community in Jeonju-River, Jeonju City. Recently Supdari has been restored for the use of belongings in local festivals. But Jeonju-River Supdari was designed and built to unite local citizens and connect river-divided villages. This project shows how investing social capital like Supdari makes the community vitalize through citizen's active participation. As a citizen leading project, there were several critical factors for sucess. At first, there were some noticeable ways to encourage local citizen's participation in online and offline. In the online, the Supdari internet cafe introduced what is a Supdari, how to make it and where we build using various media of UCCs and photos. In the offline, the small scaled model of Supdari was made and exhibited in the entrance of the village and related several seminars were hosted to discuss how to construct Supdari with citizens, local assembly men and public officials together. The Second is the movement to restore traditional and cultural resources for the community recovery triggered the supports from local councils and many civic groups. Civic groups supported ecological and structural expertise to guarantee environment friendly and stable construction. And local councils mediated citizen's and administrative office's opinions. The third is flexible administrative management to help citizen's ideas to be realized. Officials extended setting period of Supdari on the condition with the civic-control safety management.

Design of Translator for generating Secure Java Bytecode from Thread code of Multithreaded Models (다중스레드 모델의 스레드 코드를 안전한 자바 바이트코드로 변환하기 위한 번역기 설계)

  • 김기태;유원희
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.148-155
    • /
    • 2002
  • Multithreaded models improve the efficiency of parallel systems by combining inner parallelism, asynchronous data availability and the locality of von Neumann model. This model executes thread code which is generated by compiler and of which quality is given by the method of generation. But multithreaded models have the demerit that execution model is restricted to a specific platform. On the contrary, Java has the platform independency, so if we can translate from threads code to Java bytecode, we can use the advantages of multithreaded models in many platforms. Java executes Java bytecode which is intermediate language format for Java virtual machine. Java bytecode plays a role of an intermediate language in translator and Java virtual machine work as back-end in translator. But, Java bytecode which is translated from multithreaded models have the demerit that it is not secure. This paper, multhithread code whose feature of platform independent can execute in java virtual machine. We design and implement translator which translate from thread code of multithreaded code to Java bytecode and which check secure problems from Java bytecode.

  • PDF

Effects of Initiation and Perceived Similarity on the Evaluation of Online Communities (온라인 커뮤니티 속 가입절차 및 지각된 유사성에 따른 평가의 차이)

  • Yoo, Jihyun;Kang, Hyunmin;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.25-36
    • /
    • 2018
  • Nowadays, it is hard to imagine one's life without smart phones or the internet. Furthermore, not only do people form groups offline, but also online. Based on the cognitive dissonance theory, there have been many studies about how an offline group's initiation affects attitudes toward the group. However, there has not been a study about how an online group's initiation can affect attitudes toward the group. Therefore, this study aims to find out how cognitive dissonance aroused by initiation affects the attitudes toward the online community, which represents groups that are formed online. In addition, this study examined how perceived similarity affects changes in attitude aroused by cognitive dissonance. Participants were assigned to a group in three ways as follows: without a registration process, with a simple registration process, and/or with a complex registration process. Perceived similarity was calculated by the difference between the current body mass index (BMI) and the target BMI of the participant. Attitudes toward the online group were measured by perceived source credibility, perceived information quality, satisfaction, information usefulness, and continuance intention. Contrary to the cognitive dissonance theory, the results showed that when applied to offline social groups, there were conflicting results. There were cases where there was no difference in the evaluation between initiation conditions. However, other cases showed that groups with the most complex registration process were found to have the worst evaluation. People were more favorable toward the group when the perceived similarity was larger. Interestingly, people who had higher perceived similarity had more positive attitudes toward the groups that had been assigned with a registration process compared to the group formed without a registration process. Conversely, people with lower perceived similarity had more positive attitudes toward the group when there was no initiation process. Online communities may use the results of this study to design more suitable registration processes for their communities.

Analysis of the Effects of Radio Traffic Information on Urban Worker's Travel Choice Behavior (교통방송이 제공하는 교통정보가 직장인의 통행행태에 미치는 영향 분석)

  • 윤대식
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.33-43
    • /
    • 2002
  • Travel choice behavior is affected by real-time traffic information. Recently, in urban area, real-time traffic information is provided by several instruments such as transportation broadcasting, internet PC network and variable message sign, etc. Furthermore, it has been increasing for urban travelers to use real-time traffic information provided by several instruments. The purpose of this study is to analyze the effects of advanced traveler information on urban worker's travel choice behavior. Among several Advanced Traveler Information System(ATIS) employed in urban area. This study focuses on examining the effects of transportation broadcasting on urban worker's travel choice behavior. This study attempts to examine traveler's mode change behavior in the pre-trip stage and traveler's route change behavior in the on-route stage. For this study, the survey data collected from Daegu City in 2000 is used. For empirical analysis, several nested logit models are estimated, and among them, the best models are reported in this paper. Furthermore, based on the empirical models estimated for this research, important findings and their policy implications are discussed.

ANC Caching Technique for Replacement of Execution Code on Active Network Environment (액티브 네트워크 환경에서 실행 코드 교체를 위한 ANC 캐싱 기법)

  • Jang Chang-bok;Lee Moo-Hun;Cho Sung-Hoon;Choi Eui-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.610-618
    • /
    • 2005
  • As developed Internet and Computer Capability, Many Users take the many information through the network. So requirement of User that use to network was rapidly increased and become various. But it spend much time to accept user requirement on current network, so studied such as Active network for solved it. This Active node on Active network have the capability that stored and processed execution code aside from capability of forwarding packet on current network. So required execution code for executed packet arrived in active node, if execution code should not be in active node, have to take by request previous Action node and Code Server to it. But if this execution code take from previous active node and Code Server, bring to time delay by transport execution code and increased traffic of network and execution time. So, As used execution code stored in cache on active node, it need to increase execution time and decreased number of request. So, our paper suggest ANC caching technique that able to decrease number of execution code request and time of execution code by efficiently store execution code to active node. ANC caching technique may decrease the network traffic and execution time of code, to decrease request of execution code from previous active node.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

Color-related Query Processing for Intelligent E-Commerce Search (지능형 검색엔진을 위한 색상 질의 처리 방안)

  • Hong, Jung A;Koo, Kyo Jung;Cha, Ji Won;Seo, Ah Jeong;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.109-125
    • /
    • 2019
  • As interest on intelligent search engines increases, various studies have been conducted to extract and utilize the features related to products intelligencely. In particular, when users search for goods in e-commerce search engines, the 'color' of a product is an important feature that describes the product. Therefore, it is necessary to deal with the synonyms of color terms in order to produce accurate results to user's color-related queries. Previous studies have suggested dictionary-based approach to process synonyms for color features. However, the dictionary-based approach has a limitation that it cannot handle unregistered color-related terms in user queries. In order to overcome the limitation of the conventional methods, this research proposes a model which extracts RGB values from an internet search engine in real time, and outputs similar color names based on designated color information. At first, a color term dictionary was constructed which includes color names and R, G, B values of each color from Korean color standard digital palette program and the Wikipedia color list for the basic color search. The dictionary has been made more robust by adding 138 color names converted from English color names to foreign words in Korean, and with corresponding RGB values. Therefore, the fininal color dictionary includes a total of 671 color names and corresponding RGB values. The method proposed in this research starts by searching for a specific color which a user searched for. Then, the presence of the searched color in the built-in color dictionary is checked. If there exists the color in the dictionary, the RGB values of the color in the dictioanry are used as reference values of the retrieved color. If the searched color does not exist in the dictionary, the top-5 Google image search results of the searched color are crawled and average RGB values are extracted in certain middle area of each image. To extract the RGB values in images, a variety of different ways was attempted since there are limits to simply obtain the average of the RGB values of the center area of images. As a result, clustering RGB values in image's certain area and making average value of the cluster with the highest density as the reference values showed the best performance. Based on the reference RGB values of the searched color, the RGB values of all the colors in the color dictionary constructed aforetime are compared. Then a color list is created with colors within the range of ${\pm}50$ for each R value, G value, and B value. Finally, using the Euclidean distance between the above results and the reference RGB values of the searched color, the color with the highest similarity from up to five colors becomes the final outcome. In order to evaluate the usefulness of the proposed method, we performed an experiment. In the experiment, 300 color names and corresponding color RGB values by the questionnaires were obtained. They are used to compare the RGB values obtained from four different methods including the proposed method. The average euclidean distance of CIE-Lab using our method was about 13.85, which showed a relatively low distance compared to 3088 for the case using synonym dictionary only and 30.38 for the case using the dictionary with Korean synonym website WordNet. The case which didn't use clustering method of the proposed method showed 13.88 of average euclidean distance, which implies the DBSCAN clustering of the proposed method can reduce the Euclidean distance. This research suggests a new color synonym processing method based on RGB values that combines the dictionary method with the real time synonym processing method for new color names. This method enables to get rid of the limit of the dictionary-based approach which is a conventional synonym processing method. This research can contribute to improve the intelligence of e-commerce search systems especially on the color searching feature.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Motives for Writing After-Purchase Consumer Reviews in Online Stores and Classification of Online Store Shoppers (인터넷 점포에서의 구매후기 작성 동기 및 점포 고객 유형화)

  • Hong, Hee-Sook;Ryu, Sung-Min
    • Journal of Distribution Research
    • /
    • v.17 no.3
    • /
    • pp.25-57
    • /
    • 2012
  • This study identified motives for writing apparel product reviews in online stores, and determined what motives increase the behavior of writing reviews. It also classified store customers based on the type of writing motives, and clarified the characteristics of internet purchase behavior and of a demographic profile. Data were collected from 252 females aged 20s' and 30s' who have experience of reading and writing reviews on online shopping. The five types of writing motives were altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and the expression of satisfaction feelings. Among five motives, altruistic information sharing, economic incentives, and helping new product development stimulate writing reviews. Store customers who write reviews were classified into three groups based on their writing motive types: Other consumer advocates(29.8%), self-interested shoppers(40.5%) and shoppers with moderate motives(29.8%). There were significant differences among three groups in writing behavior (the frequency of writing reviews, writing intent of reviews, duration of writing reviews, and frequency of online shopping) and age. Based on results, managerial implications were suggested. Long Abstract : The purpose of present study is to identify the types of writing motives on online shopping, and to clarify the motives affecting the behavior of writing reviews. This study also classifies online shoppers based on the motive types, and identifies the characteristics of the classified groups in terms of writing behavior, frequency of online shopping, and demographics. Use and Gratification Theory was adopted in this study. Qualitative research (focus group interview) and quantitative research were used. Korean women(20 to 39 years old) who reported experience with purchasing clothing online, and reading and writing reviews were selected as samples(n=252). Most of the respondents were relatively young (20-34yrs., 86.1%,), single (61.1%), employed(61.1%) and residents living in big cities(50.9%). About 69.8% of respondents read and 40.5% write apparel reviews frequently or very frequently. 24.6% of the respondents indicated an "average" in their writing frequency. Based on the qualitative result of focus group interviews and previous studies on motives for online community activities, measurement items of motives for writing after-purchase reviews were developed. All items were used a five-point Likert scale with endpoints 1 (strongly disagree) and 5 (strongly agree). The degree of writing behavior was measured by items concerning experience of writing reviews, frequency of writing reviews, amount of writing reviews, and intention of writing reviews. A five-point scale(strongly disagree-strongly agree) was employed. SPSS 18.0 was used for exploratory factor analysis, K-means cluster analysis, one-way ANOVA(Scheffe test) and ${\chi}^2$-test. Confirmatory factor analysis and path model analysis were conducted by AMOS 18.0. By conducting principal components factor analysis (varimax rotation, extracting factors with eigenvalues above 1.0) on the measurement items, five factors were identified: Altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and expression of satisfaction feelings(see Table 1). The measurement model including these final items was analyzed by confirmatory factor analysis. The measurement model had good fit indices(GFI=.918, AGFI=.884, RMR=.070, RMSEA=.054, TLI=.941) except for the probability value associated with the ${\chi}^2$ test(${\chi}^2$=189.078, df=109, p=.00). Convergent validities of all variables were confirmed using composite reliability. All SMC values were found to be lower than AVEs confirming discriminant validity. The path model's goodness-of-fit was greater than the recommended limits based on several indices(GFI=.905, AGFI=.872, RMR=.070, RMSEA=.052, TLI=.935; ${\chi}^2$=260.433, df=155, p=.00). Table 2 shows that motives of altruistic information sharing, economic incentives and helping new product development significantly increased the degree of writing product reviews of online shopping. In particular, the effect of altruistic information sharing and pursuit of economic incentives on the behavior of writing reviews were larger than the effect of helping new product development. As shown in table 3, online store shoppers were classified into three groups: Other consumer advocates (29.8%), self-interested shoppers (40.5%), and moderate shoppers (29.8%). There were significant differences among the three groups in the degree of writing reviews (experience of writing reviews, frequency of writing reviews, amount of writing reviews, intention of writing reviews, and duration of writing reviews, frequency of online shopping) and age. For five aspects of writing behavior, the group of other consumer advocates who is mainly comprised of 20s had higher scores than the other two groups. There were not any significant differences between self-interested group and moderate group regarding writing behavior and demographics.

  • PDF