• 제목/요약/키워드: urban temperature

검색결과 1,021건 처리시간 0.02초

위성영상을 이용한 도시녹지의 기온저감 효과 분석 (An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature)

  • 윤민호;안동만
    • 한국조경학회지
    • /
    • 제37권3호
    • /
    • pp.46-53
    • /
    • 2009
  • 위성영상 자료를 이용하여 녹지가 주변 도시지역 기온저감에 영향을 미치는 범위를 분석하는 방법을 제시하였다. Landsat 5 TM Band 6에서 표면온도를 추출하고, 이를 자동기상관측소의 실측기온을 이용하여 기온으로 보정하였다. 위와 같은 방법으로 위성영상으로부터 지표온도를 추출 보정한 후 녹지가 도시기온에 미치는 영향을 살펴보기 위하여 등온선도를 작성하였다. 기온이 거리에 따라 급격하게 변화하는 지역을 기온완화구간이라고 정의하고, 100m당 $0.1^{\circ}C$ 이상의 기온저감을 기준으로 기온완화효과 영역을 설정하였다. 위와 같은 방법으로 수혜면적을 도출한 후 해당행정구역 내 인구가 동일하게 분포한다고 가정하여 기온저감수혜인구를 도출하였다. 본 연구의 결과는 다음과 같다. 녹지의 기온저감영향이 녹지로부터 반경 500m까지 미친다는 선행연구를 토대로 기준을 설정할 경우 시가지 중 100m 당 $0.1^{\circ}C$ 이상의 기온저감 영향을 받는 면적은 $67.33km^2$로 전체 서울시 면적의 11.12%, 시가지면적을 기준으로 할 경우 18.09%를 차지한다. 서울시민이 시가지에 등밀도로 거주한다고 가정하면 2008년 1/4분기 기준으로 서울시 인구 10,456,095명 중 약 1,892,000명을 기온저감 수혜인구로 추정할 수 있다. 또한, 기온저감 영향권역 단면 50곳을 임의로 선정하여 단면도를 작성한 결과, 녹지의 경계부와 시가지의 기온은 평균 $0.78^{\circ}C$ 차이가 났으며, 최저 $0.3^{\circ}C$, 최대 $1.7^{\circ}C$의 차이를 보였다. 이를 통해 열섬완화측면에서 법률상 공원의 유치거리 및 배치의 적절성을 분석하여 향후 공원 조성 시 인간의 이용측면만이 아닌 열섬완화 및 열 쾌적성을 고려한 새로운 기준작성의 기초자료로 활용 가능하다.

춘천지역 도시열섬의 특성과 대기질에 미치는 영향 (Aspects of Urban Heat Island and Its's Effect on Air Pollution Concentration in Chunchon Area)

  • 이종범;김용국;김태우
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.303-309
    • /
    • 1993
  • An observational study of urban heat island was carried out using field data obatined during 6 days in May and August 1992 in Chunchon(population size 180.000). Air temperature was measured at 64 points along two sampling ruoutes by themisters attached to cars. Both routes cover urban and rural area and across the cneter of urban area. Continuous observation of air sonde was perfomed to clarify heights of nocturnal boundary layer(NBL) at the center of urban area. Surface meteorological observations were performed at both urban and rural sites. This study showed that heat island phenomena was obviously observed at the urbanized area during the night time with low wind speed. The average NBL heights exteded to about 10 meters, but varied with meteorological conditions. After sunset, the air temperature decreased with time at both sites and cooling rate at the urban site was greater than the rural site. The maximum heat island intensity was 7.5$^{\circ}$C at 21 LST, May 4. Usingthe two meteorological data sets obtained from urban and rural sites, the air pollutant concentration was calculated by Gaussian plume model which can obtain not only horizontal distribution of concentration but also vertical distribution. The result indicated that the concentration resulted from urban meteorological data set was lower than that from rural meteorological data set. It was also calculated that the air pollutant extended to higher level in urban meteorological data set than that in rural meteorological data set.

  • PDF

Landsat TM 데이터에 의한 식생피복율과 지표면온도와의 관계 해석 (Analysis of Relationship between Vegetation Cover Rates and Surface Temperature Using Landsat TM Data)

  • 박종화;나상일;김진수
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.569-573
    • /
    • 2005
  • Land surface temperature(LST) is one of the key parameters in physics and meteorology of land-surface processes on regional and global scales. Urban Heat Island(UHI), a meteorological phenomenon by which the air temperature in an urban area increases beyond that in the suburbs, grows with the progress of urbanization. Satellite remote sensing has been expected to be effective for obtaining thermal information of the earth's surface with a high resolution. The main purpose of this study is to produce LST map of Cheongju and to analyze the spatial distributions of surface heat fluxes in urban areas. This study, taking Cheongju as the study area, aims to examine relationship between vegetation cover rates and surface temperature, and to clarify a method for calculation surface temperature with Landsat TM thermal images.

  • PDF

시가화지역 토지이용 및 녹지구조에 따른 온도변화 연구 (Analysis of Temperature Profiles by Land Use and Green Structure on Built-up Area)

  • 홍석환;이경재;한봉호
    • 한국환경생태학회지
    • /
    • 제19권4호
    • /
    • pp.375-384
    • /
    • 2005
  • 본 연구는 시가화지역 토지이용 및 녹지구조에 따른 온도변화를 파악하고자 강남구 내 시가화지역을 대상으로 44개소 조사지를 블록단위로 선정하여 실시하였다. 온도값은 1999${\~}$2002년까지의 Landsat TM 및 ETM+ 영상 6scene을 적용하였다. 도시온도변화에 대한 영향요인 분석결과 토지 이용유형은 그 자체로 도시온도변화의 중요 인자로 작용하지는 않는 것으로 판단되었으며 토양피복유형은 상관관계 분석결과 상관계수가 건폐율이 0.368(2001년 6월)${\~}$0.709(1999년 5월)로 양(+)의 상관관계에 있었으며 녹지율은 -0.551(2001년 6월)${\~}$-0.860(1999년 6월)으로 음(-)의 상관관계를 보였다. 녹지용적(녹지용적계수${\times}$100), 녹피율과 온도값과의 상관관계 분석 결과 녹피율과의 상관계수는 -0.549(2001년 6월)${\~}$-0.817(1999년 6월)의 범위이었으며 녹지용적은 -0.517(2001년 6월)${\~}$-0.882(1999년 6월)로 녹피율과 녹지용적 모두 각 온도값과 강한 음(-)의 상관관계를 보였다. 도시화지역 온도변화 예측모형 구축을 위한 회귀분석 결과 녹지용적이 설명 변수로 채택되었다.

도심 주행 조건에 따른 차량 탑재 태양광모듈의 발전특성 분석 (Analysis on Power Generation Characteristics of a Vehicle Rooftop Photovoltaic Module with Urban Driving Conditions)

  • 전선우;정승훈;배성우;최재영;신동현
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-86
    • /
    • 2020
  • This study examines the power generation characteristics of a vehicle rooftop photovoltaic module with urban driving conditions. Actual test data with an illuminometer and a thermometer were used to analyze the power generation characteristics of the vehicle rooftop photovoltaic module. In addition, the power generation characteristics were analyzed in terms of urban driving conditions, irradiance, ambient temperature, and photovoltaic module temperature. This study also analyzes the power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions through a wavelet transform filtering method. The power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions depend on the change in irradiance rather than that in photovoltaic module temperature.

Envi-Met.을 이용한 도심 대기경계층 내 확산장 변화 수치 모의 (Diffusion Simulation Using Envi-Met. in Urban Planetary Boundary Layer)

  • 최현정
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.357-371
    • /
    • 2016
  • Buildings in the city acts as a cause of distorted wind direction, wind speed, causing the stagnation of the air flow. In the recent trend of climate change can not but consider the temperature rise of the urbanization. This study was aimed to analyze the thermal comfort of planetary boundary layer in different artificial constructions areas which has a direct impact on urban climate, and estimating the warming phenomena. Envi-met model was used to consider the urban structure associated with urban growth in order to precisely determine the impact of the building on the city weather condition. The analyzed values of thermal comfort index were temperature, wind speed, horizontal and vertical turbulent diffusivity. In particular, analysis of the PPD(Predicted Percentage of Dissatisfied) represents the human thermal comfort. In this study, by adjusting the arrangement and proportion of the top floor building in the urban it was found that the inflow of the fresh air and cooling can be derived low PPD. Vertical heat flux amount of the city caused by climate change was a factor to form a high potential temperature in the city and the accumulation of cold air does not appear near the surface. Based on this, to make the city effectively respond to climate change may require a long-term restructuring of urban spatial structure and density management.

도시 열환경 분석을 위한 공간정보 빅데이터 구축 (Construction of Spatial Information Big Data for Urban Thermal Environment Analysis)

  • 이준호;윤성환
    • 대한건축학회논문집:계획계
    • /
    • 제36권5호
    • /
    • pp.53-58
    • /
    • 2020
  • The purpose of this study is to build a database of Spatial information Bigdata of cities using satellite images and spatial information, and to examine the correlations with the surface temperature. Using architectural structure and usage in building information, DEM and Slope topographical information for constructed with 300 × 300 mesh grids for Busan. The satellite image is used to prepare the Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BI), and Land Surface Temperature (LST). In addition, the building area in the grid was calculated and the building ratio was constructed to build the urban environment DB. In architectural structure, positive correlation was found in masonry and concrete structures. On the terrain, negative correlations were observed between DEM and slope. NDBI and BI were positively correlated, and NDVI was negatively correlated. The higher the Building ratio, the higher the surface temperature. It was found that the urban environment DB could be used as a basic data for urban environment analysis, and it was possible to quantitatively grasp the impact on the architecture and urban environment by adding local meteorological factors. This result is expected to be used as basic data for future urban environment planning and disaster prevention data construction.

Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang
    • Journal of Ecology and Environment
    • /
    • 제45권4호
    • /
    • pp.190-202
    • /
    • 2021
  • Background: Landscape metrics have been widely applied to quantifying the relationship between land surface temperature and urban spatial patterns and have received acceptable verification from landscape ecologists but some studies have shown their inaccurate results. The objective of the study is to compare landscape metrics and texture-based measures as alternative indices in measuring urban heterogeneity effects on LST at multiple scales. Results: The statistical results showed that the correlation between urban landscape heterogeneity and LST increased as the spatial extent (scale) of under-study landscapes increased. Overall, landscape metrics showed that the less fragmented, the more complex, larger, and the higher number of patches, the lower LST. The most significant relationship was seen between edge density (ED) and LST (r = - 0.47) at the sub-region scale. Texture measures showed a stronger relationship (R2 = 34.84% on average) with LST than landscape metrics (R2 = 15.33% on average) at all spatial scales, meaning that these measures had a greater ability to describe landscape heterogeneity than the landscape metrics. Conclusion: This study suggests alternative measures for overcoming landscape metrics shortcomings in estimating the effects of landscape heterogeneity on LST variations and gives land managers and urban planners new insights into urban design.

도시 열환경 시뮬레이션을 위한 라그랑지안 열원 역추적 기법의 연구 (Study On Lagrangian Heat Source Tracking Method for Urban Thermal Environment Simulations)

  • 김석철;이주성;윤정임;강종화;김완수
    • 한국대기환경학회지
    • /
    • 제33권6호
    • /
    • pp.583-592
    • /
    • 2017
  • A method is proposed for locating the heat sources from temperature observations, and its applicability is investigated for urban thermal environment simulations. A Lagrangian particle dispersion model, which is originally built for simulating the pollutants spread in the air, is exploited to identify the heat sources by transporting the Lagrangian heat particles backwards in time. The urban wind fields are estimated using a diagnostic meteorological model incorporating the morphological model for the urban canopy. The proposed method is tested for the horizontally homogeneous urban boundary layer problems. The effects of the turbulence levels and the computational time on the simulation are investigated.

도시 지표면 온도분포 특성 및 열섬완화방안 (A Study on the Distribution Characteristic of Urban Surface Temperature and Urban Heat Island Effects)

  • 도후조;이정민;나정화
    • 한국환경과학회지
    • /
    • 제16권5호
    • /
    • pp.611-622
    • /
    • 2007
  • The purpose of this research was to three-criteria landuse-pattern, developing density, NDVI which were related to the heat island and find the distribution characteristic of urban surface temperature and urban heat island effects. The results of this study were as follows. According to the analysis of surface temperatures, the first grade was the outside-city like a mountain and its temperature was less than $12.18^{\circ}C$. The fifth grade was the downtown industrial area and its temperature was more than $23.54^{\circ}C$. It means Daegu-Metropolitan-City has the serious heat-island effect. the results of landuse pattern analysis, in case of fifth and forth grade, city area was occupied over 90% with residential, commercial and industrial areas, but in case of third grade, openspace was occupied over 70%. The results of developing density analysis, the temperature had high correlation with building ratio, road ratio, vegetation ratio and etc. To plan for the decrease of heat island effect needed the extension of green space, decrease of paving, but there was a limit to get the objective method for grade classification because of lacking in the basic data, the research of criteria will be accomplished continuously.