Browse > Article
http://dx.doi.org/10.5572/KOSAE.2017.33.6.583

Study On Lagrangian Heat Source Tracking Method for Urban Thermal Environment Simulations  

Kim, Seogcheol (Boolt Simulation, Inc.)
Lee, Joosung (Boolt Simulation, Inc.)
Yun, Jeongim (Boolt Simulation, Inc.)
Kang, Jonghwa (Boolt Simulation, Inc.)
Kim, Wansoo (Boolt Simulation, Inc.)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.33, no.6, 2017 , pp. 583-592 More about this Journal
Abstract
A method is proposed for locating the heat sources from temperature observations, and its applicability is investigated for urban thermal environment simulations. A Lagrangian particle dispersion model, which is originally built for simulating the pollutants spread in the air, is exploited to identify the heat sources by transporting the Lagrangian heat particles backwards in time. The urban wind fields are estimated using a diagnostic meteorological model incorporating the morphological model for the urban canopy. The proposed method is tested for the horizontally homogeneous urban boundary layer problems. The effects of the turbulence levels and the computational time on the simulation are investigated.
Keywords
Heat source tracking method; Urban temperature simulation; Morphological model; Lagrangian particle method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bentham, T., Britter, R. (2003) Spatially averaged flow within obstacle arrays, Atmospheric Environment, 37(15), 2037-2043.   DOI
2 Cimorelli, A.J., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Wilson, R.B., Brode, R.W. (2005) AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization, Journal of Applied Meteorology, 44(5), 682-693.   DOI
3 De Bruin, H.A.R., Holtslag, A.A.M. (1982) A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept, Journal of Applied Meteorology, 21(11), 1610-1621.   DOI
4 Draxler, R.R., Hess, G.D. (1998) An overview of the HYSPLIT_4 modelling system for trajectories, Australian Meteorological Magazine, 47(4), 295-308.
5 Hanna, S.R., Britter, R.E. (2002) Wind flow and vapor cloud dispersion at industrial sites. American Institute of Chemical Engineers, New York, 47-117.
6 Huttner, S., Bruse, M., Dostal, P., Katzschner, A. (2009) June. Strategies for mitigating thermal heat stress in Central European cities: The project KLIMES. In The Seventh International Conference on Urban Climate (Vol. 29)
7 Kim, B., Lee, C., Joo, S., Ryu, K., Kim, S., You, D., Shim, W. (2011) Estimation of roughness parameters within sparse urban-like obstacle arrays, Boundary-Layer Meteorology, 139, 457-485.   DOI
8 Kim, S., Yun, J. (2017) Study on Urban temperature prediction method using Lagrangian particle dispersion model, Journal of Korean Society for Atmospheric Environment, 33(1), 45-53. (in Korean with English abstract)   DOI
9 Kim, S. (2003) Evaluation of one-particle stochastic Lagrangian models in horizontally homogeneous neutrallystratified atmospheric surface layer, Journal of Korean Society for Atmospheric Environment, 19(4), 397-414. (in Korean with English abstract)
10 Kusaka, H., Hara, M., Takane, Y. (2012) Urban climate projection by the WRF model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070's August for Tokyo, Osaka, and Nagoya metropolises, Journal of the Meteorological Society of Japan. Ser. II, 90, 47-63.
11 Lettau, H. (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description, Journal of Applied Meteorology, 8(5), 828-832.   DOI
12 Lin, C.Y., Su, C.J., Kusaka, H., Akimoto, Y., Sheng, Y.F., Huang, Jr. C., Hsu, H.H. (2016) Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan, Atmospheric Chemistry and Physics, 16(3), 1809-1822.   DOI
13 Macdonald, R.W. (2000) Modelling the mean velocity profile in the urban canopy layer, Boundary-Layer Meteorology, 97(1), 25-45.   DOI
14 Panofsky, H.A., Dutton, J.A. (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley.
15 Scire, J.S., Robe, F.R., Fernau, M.E., Yamartino, R.J. (2000) A user's guide for the CALMET meteorological model (version5), 332pp.
16 Van Ulden, A.P., Holtslag, A.A.M. (1985) Estimation of atmospheric boundary layer parameters for diffusion applications, Journal of Climate and Applied Meteorology, 24(11), 1196-1207.   DOI
17 Stohl, A. (1999) The FLEXTRA Trajectory Model Version 3.0, User's Guide, 41pp.
18 Stull, R.B. (1983) A heat-flux history length scale for the nocturnal boundary layer, Tellus A: Dynamic Meteorology and Oceanography, 35(3), 219-230.   DOI
19 Sutherland, J., Peet, A.H., Soulsby, R.L. (2004) Evaluating the performance of morphological models, Coastal Engineering, 51(8), 917-939.   DOI
20 Yi, C.Y., Eum, J.H., Choi, Y.J., Kim, K.R., Scherer, D., Fehrenbach, U., Kim, G.H. (2011) Development of Climate Analysis Seoul (CAS) maps based on landuse and meteorological model, Journal of the Korean Association of Geographic Information Studies, 14(1), 12-25. (in Korean with English abstract)   DOI