Browse > Article
http://dx.doi.org/10.1186/s41610-021-00203-z

Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales  

Rahimi, Ehsan (Environmental Sciences Research Institute, Shahid Beheshti University)
Barghjelveh, Shahindokht (Environmental Sciences Research Institute, Shahid Beheshti University)
Dong, Pinliang (Department of Geography and the Environment, University of North Texas)
Publication Information
Journal of Ecology and Environment / v.45, no.4, 2021 , pp. 190-202 More about this Journal
Abstract
Background: Landscape metrics have been widely applied to quantifying the relationship between land surface temperature and urban spatial patterns and have received acceptable verification from landscape ecologists but some studies have shown their inaccurate results. The objective of the study is to compare landscape metrics and texture-based measures as alternative indices in measuring urban heterogeneity effects on LST at multiple scales. Results: The statistical results showed that the correlation between urban landscape heterogeneity and LST increased as the spatial extent (scale) of under-study landscapes increased. Overall, landscape metrics showed that the less fragmented, the more complex, larger, and the higher number of patches, the lower LST. The most significant relationship was seen between edge density (ED) and LST (r = - 0.47) at the sub-region scale. Texture measures showed a stronger relationship (R2 = 34.84% on average) with LST than landscape metrics (R2 = 15.33% on average) at all spatial scales, meaning that these measures had a greater ability to describe landscape heterogeneity than the landscape metrics. Conclusion: This study suggests alternative measures for overcoming landscape metrics shortcomings in estimating the effects of landscape heterogeneity on LST variations and gives land managers and urban planners new insights into urban design.
Keywords
Land surface temperature; Landscape heterogeneity; Texture-based measures; Landscape metrics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hofmann S, Everaars J, Schweiger O, Frenzel M, Bannehr L, Cord AF. Modelling patterns of pollinator species richness and diversity using satellite image texture. PLoS One. 2017;12(10):e0185591. https://doi.org/10.1371/journal.pone.0185591.   DOI
2 Liu H, Weng Q. Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environ Monit Assess. 2008;144(1):199-219. https://doi.org/10.1007/s10661-007-9979-5.   DOI
3 Maimaitiyiming M, Ghulam A, Tiyip T, Pla F, Latorre-Carmona P, Hali U, et al. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J Photogram Remote Sensing. 2014;89:59-66. https://doi.org/10.1016/j.isprsjprs.2013.12.010.   DOI
4 Zhang Y, Odeh IO, Ramadan E. Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using Landsat data. Int J Remote Sensing. 2013;34(1):168-89. https://doi.org/10.1080/01431161.2012.712227.   DOI
5 Osborne PE, Alvares-Sanches T. Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes. Comput Environ Urban Systems. 2019;76:80-90. https://doi.org/10.1016/j.compenvurbsys.2019.04.003.   DOI
6 Zheng B, Myint SW, Fan C. Spatial configuration of anthropogenic land cover impacts on urban warming. Landscape Urban Planning. 2014;130:104-11. https://doi.org/10.1016/j.landurbplan.2014.07.001.   DOI
7 Zhibin R, Haifeng Z, Xingyuan H, Dan Z, Xingyang Y. Estimation of the relationship between urban vegetation configuration and land surface temperature with remote sensing. J Indian Soc Remote Sensing. 2015;43(1):89-100. https://doi.org/10.1007/s12524-014-0373-9.   DOI
8 Zhou W, Huang G, Cadenasso ML. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape Urban Planning. 2011;102(1):54-63. https://doi.org/10.1016/j.landurbplan.2011.03.009.   DOI
9 Bao T, Li X, Zhang J, Zhang Y, Tian S. Assessing the distribution of urban green spaces and its anisotropic cooling distance on urban heat island pattern in Baotou, China. ISPRS Int J Geo Inf. 2016;5(2):12. https://doi.org/10.3390/ijgi5020012.   DOI
10 Asgarian A, Amiri BJ, Sakieh Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosyst. 2015;18(1):209-22. https://doi.org/10.1007/s11252-014-0387-7.   DOI
11 Bolliger, J., Wagner, H. H., Turner, M. G., 2007, Identifying and quantifying landscape patterns in space and time, in Kienast, F., Wildi, O. and Ghosh, S., eds., A Changing World: Challenges for Landscape Research, Landscape Series. Berlin: Springer, pp. 177-194. https://link.springer.com/book/10.1007%2F978-1-4020-4436-6.
12 Chen A, Yao L, Sun R, Chen L. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecol Indic. 2014;45:424-33. https://doi.org/10.1016/j.ecolind.2014.05.002.   DOI
13 Chong I-G, Jun C-H. Performance of some variable selection methods when multicollinearity is present. Chemom Intel Lab Syst. 2005;78(1-2):103-12. https://doi.org/10.1016/j.chemolab.2004.12.011.   DOI
14 Cockx K, Van de Voorde T, Canters F. Quantifying uncertainty in remote sensingbased urban land-use mapping. Int J Appl Earth Observ Geoinform. 2014;31:154-66. https://doi.org/10.1016/j.jag.2014.03.016.   DOI
15 Fan C, Myint S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landscape Urban Planning. 2014;121:117-28. https://doi.org/10.1016/j.landurbplan.2013.10.002.   DOI
16 Jaeger JA. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol. 2000;15(2):115-30. https://doi.org/10.1023/A:1008129329289.   DOI
17 Masoudi M, Tan PY. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landscape Urban Planning. 2019;184:44-58. https://doi.org/10.1016/j.landurbplan.2018.10.023.   DOI
18 Tuanmu MN, Jetz W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob Ecol Biogeogr. 2015;24(11):1329-39. https://doi.org/10.1111/geb.12365.   DOI
19 Dormann CF. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob Ecol Biogeogr. 2007;16(2):129-38. https://doi.org/10.1111/j.1466-8238.2006.00279.x.   DOI
20 Essa W, van der Kwast J, Verbeiren B, Batelaan O. Downscaling of thermal images over urban areas using the land surface temperature-impervious percentage relationship. Int J Appl Earth Observ Geoinform. 2013;23:95-108. https://doi.org/10.1016/j.jag.2012.12.007.   DOI
21 Frazier AE, Kedron P. Landscape metrics: past progress and future directions. Curr Landscape Ecol Reports. 2017;2(3):63-72. https://doi.org/10.1007/s40823-017-0026-0.   DOI
22 Gluch R. Urban growth detection using texture analysis on merged Landsat TM and SPOT-P data. Photogram Eng Remote Sensing. 2002;68(12):1283-8.
23 Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6(6):610-21. https://doi.org/10.1109/TSMC.1973.4309314.   DOI
24 Kedron PJ, Frazier AE, Ovando-Montejo GA, Wang J. Surface metrics for landscape ecology: A comparison of landscape models across ecoregions and scales. Landsc Ecol. 2018;33(9):1489-504. https://doi.org/10.1007/s10980-018-0685-1.   DOI
25 Kong F, Yin H, James P, Hutyra LR, He HS. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape Urban Planning. 2014;128:35-47. https://doi.org/10.1016/j.landurbplan.2014.04.018.   DOI
26 Shao G, Wu J. On the accuracy of landscape pattern analysis using remote sensing data. Landsc Ecol. 2008;23(5):505-11. https://doi.org/10.1007/s10980-008-9215-x.   DOI
27 Rocchini D, Foody GM, Nagendra H, Ricotta C, Anand M, He KS, et al. Uncertainty in ecosystem mapping by remote sensing. Comput Geosci. 2013;50:128-35. https://doi.org/10.1016/j.cageo.2012.05.022.   DOI
28 Li J, Song C, Cao L, Zhu F, Meng X, Wu J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens Environ. 2011;115(12):3249-63. https://doi.org/10.1016/j.rse.2011.07.008.   DOI
29 Li H, Wu J. Use and misuse of landscape indices. Landsc Ecol. 2004;19(4):389-99. https://doi.org/10.1023/B:LAND.0000030441.15628.d6.   DOI
30 Sahana M, Ahmed R, Sajjad H. Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model Earth Syst Environ. 2016;2(2):81. https://doi.org/10.1007/s40808-016-0135-5.   DOI
31 Simova P, Gdulova K. Landscape indices behavior: a review of scale effects. Appl Geography. 2012;34:385-94. https://doi.org/10.1016/j.apgeog.2012.01.003.   DOI
32 Sodoudi S, Shahmohamadi P, Vollack K, Cubasch U, Che-Ani A. Mitigating the urban heat island effect in megacity Tehran. Adv Meteorol. 2014;2014:1-19. https://doi.org/10.1155/2014/547974.   DOI
33 McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS: spatial pattern analysis program for categorical maps; 2002.
34 Li J, Narayanan RM. Integrated spectral and spatial information mining in remote sensing imagery. IEEE Trans Geosci Remote Sensing. 2004;42(3):673-85. https://doi.org/10.1109/TGRS.2004.824221.   DOI
35 Li X, Zhou W, Ouyang Z, Xu W, Zheng H. Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China. Landsc Ecol. 2012;27(6):887-98. https://doi.org/10.1007/s10980-012-9731-6.   DOI
36 Liu D, Hao S, Liu X, Li B, He S, Warrington D. Effects of land use classification on landscape metrics based on remote sensing and GIS. Environ Earth Sci. 2013;68(8):2229-37. https://doi.org/10.1007/s12665-012-1905-7.   DOI
37 Lu L, Weng Q, Xiao D, Guo H, Li Q, Hui W. Spatiotemporal variation of surface urban heat islands in relation to land cover composition and configuration: a multi-scale case study of Xi'an, China. Remote Sens (Basel). 2020;12(17):2713. https://doi.org/10.3390/rs12172713.   DOI
38 Ma Q, Wu J, He C. A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: spatial scale dependence, temporal variations, and bioclimatic modulation. Landsc Ecol. 2016;31(5):1139-53. https://doi.org/10.1007/s10980-016-0356-z.   DOI
39 Neel MC, McGarigal K, Cushman SA. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc Ecol. 2004;19(4):435-55. https://doi.org/10.1023/B:LAND.0000030521.19856.cb.   DOI
40 Song J, Du S, Feng X, Guo L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landscape Urban Planning. 2014;123:145-57. https://doi.org/10.1016/j.landurbplan.2013.11.014.   DOI
41 St-Louis V, Pidgeon AM, Kuemmerle T, Sonnenschein R, Radeloff VC, Clayton MK, et al. Modelling avian biodiversity using raw, unclassified satellite imagery. Phil Trans Royal Soc London B Biol Sci. 2014;369(1643):20130197. https://doi.org/10.1098/rstb.2013.0197.   DOI
42 Turner, M. G., Gardner, R. H., O'neill, R. V., 2001, Landscape ecology in theory and practice (Vol.401). New York: Springer.
43 Tuttle EM, Jensen RR, Formica VA, Gonser RA. Using remote sensing image texture to study habitat use patterns: a case study using the polymorphic white-throated sparrow (Zonotrichia albicollis). Glob Ecol Biogeogr. 2006;15(4):349-57. https://doi.org/10.1111/j.1466-822X.2006.00232.x.   DOI
44 Park Y, Guldmann J-M. Measuring continuous landscape patterns with Gray-Level Co-Occurrence Matrix (GLCM) indices: an alternative to patch metrics? Ecol Indic. 2020;109:105802. https://doi.org/10.1016/j.ecolind.2019.105802.   DOI
45 Masoudi M, Tan PY, Liew SC. Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecol Indic. 2019;98:200-13. https://doi.org/10.1016/j.ecolind.2018.09.058.   DOI
46 Myint SW, Brazel A, Okin G, Buyantuyev A. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city. GIScience Remote Sensing. 2010;47(3):301-20. https://doi.org/10.2747/1548-1603.47.3.301.   DOI
47 Nole G, Lasaponara R, Lanorte A, Murgante B. Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int J Agric Environ Inform Sys. 2014;5(2):19-37. https://doi.org/10.4018/IJAEIS.2014040102.   DOI
48 Saura S, Castro S. Scaling functions for landscape pattern metrics derived from remotely sensed data: Are their subpixel estimates really accurate? ISPRS J Photogram Remote Sensing. 2007;62(3):201-16. https://doi.org/10.1016/j.isprsjprs.2007.03.004.   DOI
49 Connors JP, Galletti CS, Chow WT. Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc Ecol. 2013;28(2):271-83. https://doi.org/10.1007/s10980-012-9833-1.   DOI
50 Fan C, Myint SW, Zheng B. Measuring the spatial arrangement of urban vegetation and its impacts on seasonal surface temperatures. Prog Phys Geography. 2015;39(2):199-219. https://doi.org/10.1177/0309133314567583.   DOI
51 Cadenasso ML, Pickett ST, Schwarz K. Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Environ. 2007;5(2):80-8. https://doi.org/10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2.   DOI
52 Coburn C, Roberts AC. A multiscale texture analysis procedure for improved forest stand classification. Int J Remote Sensing. 2004;25(20):4287-308. https://doi.org/10.1080/0143116042000192367.   DOI
53 Cushman SA, Huettmann F. Spatial complexity, informatics, and wildlife conservation: Springer; 2010. https://doi.org/10.1007/978-4-431-87771-4.   DOI
54 Estoque RC, Murayama Y, Myint SW. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci Total Environ. 2017;577:349-59. https://doi.org/10.1016/j.scitotenv.2016.10.195.   DOI
55 Ferreira PA, Boscolo D, Lopes LE, Carvalheiro LG, Biesmeijer JC, da Rocha PLB, et al. Forest and connectivity loss simplify tropical pollination networks. Oecologia. 2020;192(2):577-90. https://doi.org/10.1007/s00442-019-04579-7.   DOI
56 Guo G, Wu Z, Chen Y. Complex mechanisms linking land surface temperature to greenspace spatial patterns: Evidence from four southeastern Chinese cities. Sci Total Environ. 2019;674:77-87. https://doi.org/10.1016/j.scitotenv.2019.03.402.   DOI
57 Li C, Zhao J, Thinh NX, Yang W, Li Z. Analysis of the spatiotemporally varying effects of urban spatial patterns on land surface temperatures. Journal of Environ Eng Landscape Manag. 2018;26(3):216-31. https://doi.org/10.3846/jeelm.2018.5378.   DOI
58 Wu J, Shen W, Sun W, Tueller PT. Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol. 2002;17(8):761-82. https://doi.org/10.1023/A:1022995922992.   DOI
59 Wood EM, Pidgeon AM, Radeloff VC, Keuler NS. Image texture predicts avian density and species richness. PLoS One. 2013;8(5):e63211. https://doi.org/10.1371/journal.pone.0063211.   DOI
60 Wu C, Li J, Wang C, Song C, Haase D, Breuste J, et al. Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in Shanghai, China. Front Environ Sci. 2021;9:181. https://doi.org/10.3389/fenvs.2021.657969.   DOI
61 Wu Q, Tan J, Guo F, Li H, Chen S. Multi-scale relationship between land surface temperature and landscape pattern based on wavelet coherence: the case of metropolitan Beijing, China. Remote Sens (Basel). 2019;11(24):3021. https://doi.org/10.3390/rs11243021.   DOI
62 Xiao R-B, Ouyang Z-Y, Zheng H, Li W-F, Schienke EW, Wang X-K. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J Environ Sci. 2007;19(2):250-6. https://doi.org/10.1016/S1001-0742(07)60041-2.   DOI
63 Xie M, Wang Y, Chang Q, Fu M, Ye M. Assessment of landscape patterns affecting land surface temperature in different biophysical gradients in Shenzhen, China. Urban Ecosyst. 2013;16(4):871-86. https://doi.org/10.1007/s11252-013-0325-0.   DOI
64 Zhang X, Zhong T, Feng X, Wang K. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int J Remote Sensing. 2009;30(8):2105-18. https://doi.org/10.1080/01431160802549252.   DOI
65 Mallick J, Rahman A, Singh CK. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using nighttime ASTER satellite data in highly urbanizing city, Delhi-India. Adv Space Res. 2013;52(4):639-55. https://doi.org/10.1016/j.asr.2013.04.025.   DOI
66 Zhou W, Wang J, Cadenasso ML. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens Environ. 2017;195:1-12. https://doi.org/10.1016/j.rse.2017.03.043.   DOI
67 Yue W, Xu J, Tan W, Xu L. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. Int J Remote Sensing. 2007;28(15):3205-26. https://doi.org/10.1080/01431160500306906.   DOI