• Title/Summary/Keyword: upslope area

Search Result 17, Processing Time 0.021 seconds

Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling (수치고도모델의 격자크기와 유수흐름 알고리듬의 선택이 토양경관 모델링에 미치는 영향)

  • Park, S.J.;Ruecker, G.R.;Agyare, W.A.;Akramhanov, A.;Kim, D.;Vlek, P.L.G.
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.2
    • /
    • pp.122-145
    • /
    • 2009
  • Terrain parameters calculated from digital elevation models (DEM) have become increasingly important in current spatially distributed models of earth surface processes. This paper investigated how the ability of upslope area for predicting the spatial distribution of soil properties varies depending on the selection of spatial resolutions of DEM and algorithms. Four soil attributes from eight soil-terrain data sets collected from different environments were used. Five different methods of calculating upslope area were first compared for their dependency on different grid sizes of DEM. Multiple flow algorithms produced the highest correlation coefficients for most soil attributes and the lowest variations amongst different DEM resolutions and soil attributes. The high correlation coefficient remained unchanged at resolutions from 15 m to 50 m. Considering decreasing topographical details with increasing grid size, we suggest that the size of 15-30 m may be most suitable for soil-landscape analysis purposes in our study areas.

Spread Speed of Forest Fire based on Slope (경사에 따른 산불의 확산속도)

  • An, Sang-Hyun;Shin, Young-Chun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.75-79
    • /
    • 2008
  • As Information Technology developed, Information requirement has been went higher. In the field of GIS(Geographic Information System) more information is processed more quickly and accurately. Especially, quick analysis of forest fire information (topography, ignition point, weather condition, etc.) over a wide area is essential in order to minimize victim, environmental damage, and economical damage, decide course of evacuating, estimate a fire spread course, and attack resource arrangement. We determined a fire spread distance at each unit time through an experiment with various slope degrees and distinction of flat, upslope and downslope. For the tests on the upslope, as the slope increased, the rate of spread increased. On the downslope in contrast with the upslope, as the slope increased, the rate of spread decreased. We analyzed a spread rate of forest fire on each slope as the method classified upslope(+) and downslope(-) using the results obtained from the experiment. Consequently, the proposed method is able to be used to effectively support the attack of forest fire by providing accurate predictions of fire spread.

Development of Digital Terrain Analysis for an Identification of Wetland Area at Mountainous Watershed (산지습지의 수문지형분석 방법론의 개발)

  • Jang, Eun-Se;Lee, Eun-Hyung;Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2015
  • In this study, a digital terrain analysis had been performed for a mountainous watershed having wetlands. In order to consider the impact for wetland in the flow determination algorithm, the Laplace equation is implemented into the upslope accounting algorithm of wetness computation scheme. The computational algorithm of wetland to spatial contribution of downslope area and wetness was also developed to evaluate spatially distributed runoff due to the presence of wetland. Developed schemes were applied to Wangpichun watershed located Chuncuk mountain at Ulzingun, South Korea. Both spatial distribution of wetness and its histogram indicate that the developed scheme provides feasible consideration of wetland impact in spatial hydrologic analysis. The impact of wetland to downslope propagation pattern is also useful to evaluate spatially distributed runoff distribution.

The Resolution of the Digital Terrain Index for the Prediction of Soil Moisture (토양수분 예측을 위한 수치지형 인자와 격자 크기에 대한 연구)

  • Han, Ji-Young;Kim, Sang-Hyun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.251-261
    • /
    • 2003
  • The resolution issue of various soil moisture prediction parameters such as wetness index and curvatures is addressed. The sensitivities of various index are discussed on the base of the statistical aspects. The statistical analysis of three flow determination algorithms on the DEM is performed. The upslope area associated with SFD algorithm appear to more sensitive than the parameters of the other algorithms(MFD, DEMON). The wetness index shows relatively less variation both in resolution and the calculation Procedures.

A numerical study of the orographic effect of the Taebak mountains on the increase of the downslope wind speed near Gangnung area (태백산맥의 지형적인 효과와 관련된 강릉 지역의 강풍 사례에 대한 수치모의 연구)

  • 이재규
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1245-1254
    • /
    • 2003
  • A numerical simulation for 11 February 1996 has been done to grasp main mechanisms of the occurrence of strong downslope winds near Gangnung area. The simulation performed by using ARPS (Advanced Regional Prediction System) showed that enhanced surface winds were not related with a reflection of vertically propagating gravity waves. Froude numbers were about 1.0, 0.4 and 0.6 for the atmosphere above Daekwanryoung and above a place located 220km upstream, and above another place located 230km downstream from the Taebak mountains, respectively. This suggested that as a subcritical flow ascended the upslope side of the Taebak mountains, Froude numbers would tend to increase according to the increase in wind speed, and near the crest the flow would become supercritical and continue to accelerate as it went down the downslope side until it was adapted back to the ambient subcritical conditions in a turbulent hydraulic jump. Simulated Froude numbers corroborated the hydraulic jump nature of the strong downslope wind. In addition, the inversion was found near the mountain top height upstream of the mountains, and it was favorable for the occurrence of strong downslope winds.

Analyzing the Disaster Vulnerability of Mt. Baekdusan Area Using Terrain Factors (지형 요소를 고려한 백두산 지역의 위험도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol;Lee, Kyu-Hwan;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.605-614
    • /
    • 2013
  • Most steep slope failures tend to take place in geographically unstable areas. Mt. Baekdusan is known as a potentially active volcano in a typical mountainous terrain. This study prepared a digital elevation model of Mt. Baekdusan area and created a hazard map based on topographical factors and structural lineament analysis. Factors used in vulnerability analysis included geographical data involving aspect and slope distribution, as well as contributory area of upslope, tangential gradient curvature, profile gradient curvature, and the distribution of wetness index among the elements that comprise topography. In addition, the stability analysis was conducted based on the lineament intensity map. Concerning the disaster vulnerability of Mt. Baekdusan region, the south and south west area of Mt. Baekdusan has a highest risk of disaster (grade 4-5) while the risk level decreases in the north eastern region.

Case Study on the Hazard Susceptibility Prediction of Debris Flows using Surface Water Concentration Analysis and the Distinct Element Method (수계 집중도 분석 및 개별요소법을 이용한 토석류 위험도 예측 사례 연구)

  • Lee, Jong-Hyun;Kim, Seung-Hyun;Ryu, Sang-Hoon;Koo, Ho-Bon;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Various studies regarding the prediction of landslides are underway internationally. Research into disaster prevention with regard to debris flows is a particular focus of research because this type of landslide can cause enormous damage over a short period. The objective of this study is to determine the hazard susceptibility of debris flow via predictions of surface water concentrations based on the concept that a debris flow is similar to a surface water flow, as it is influenced by mountain topography. This study considered urban areas affected by large debris flows or landslides. Digital mapping (including the slope and upslope contributing areas) and the wetness index were used to determine the relevant topographic factors and the hydrology of the area. We determined the hazard susceptibility of debris flow by predicting the surface water concentration based on the topography of the surrounding mountainous terrain. Results obtained using the distinct element method were used to derive a correlation equation between the weight and the impact force of the debris flow. We consider that in using a correlation equation, this method could assist in the effective installation of debris-flow-prevention structures.

A Digital Elevation Analysis : Sparially Distributed Flow Apportioning Algorithm (수치 고도 분석 : 분포형 흐름 분배 알고리즘)

  • Kim, Sang-Hyeon;Kim, Gyeong-Hyeon;Jeong, Seon-Hui
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.3
    • /
    • pp.241-251
    • /
    • 2001
  • A flow determination algorithm is proposed for the distributed hydrologic model. The advantages of a single flow direction scheme and multiple flow direction schemes are selectively considered to address the drawbacks of existing algorithms. A spatially varied flow apportioning factor is introduced in order to accommodate the accumulated area from upslope cells. The channel initiation threshold area(CIT) concept is expanded and integrated into the spatially distributed flow apportioning algorithm in order to delineate a realistic channel network. An application of a field example suggests that the linearly distributed flow apportioning scheme provides some advantages over existing approaches, such as the relaxation of over-dissipation problems near channel cells, the connectivity feature of river cells, the continuity of saturated areas and the negligence of the optimization of few parameters in existing algorithms. The effects of grid sizes are explored spatially as well as statistically.

  • PDF

Effective Water Resources Development by the Management of Sediment Deposit in Agricultural Reservoirs (농업용 저수지의 퇴적토사 관리를 통한 효율적 수자원 개발)

  • Son, Kwang-Ik;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.467-477
    • /
    • 2004
  • Effective management of water resources in Korea becomes very important in recent years. Especially, the management of reservoirs cannot be over emphasized. The status of sediment deposit and the dredging records of agricultural reservoirs were examined to find out at e reservoir retention capacity could be raised more than 10% of the total volume of reservoirs in Kyungbook Province. Sediment prediction methods were developed by combining the estimation mothods of geomorphological characteristics and upslope contribution area in GIS, The estimated sediment depsit amount were compared with the dredging records for three agricultural reservoires. It was found that the distributed model with ‘Flow accumulation’ and ‘Multiple Flow Direction Algorithm’ gives good prediction results for mountaineous area.

Regeneration and leaf traits variation of Rhododendron campanulatum along elevation gradient in western Nepal Himalaya

  • Dipesh Karki;Bijay Pandeya;Rachana Bhandari;Dikshya Basnet;Balkrishna Ghimire;Shreehari Bhattarai;Bharat Babu Shrestha
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • Background: Plant species of the alpine treeline ecotone are highly sensitive to climate change and may adjust their population dynamics, and functional traits in response to changing climate. This study examined regeneration patterns and leaf traits variations in an important treeline ecotone element Rhododendron campanulatum along the elevation gradient in western Nepal to assess its potential adaptive responses to climate change. The distribution range of R. campanulatum (3,400-3,800 m above sea level [a.s.l.]) was divided into five horizontal bands, each with a 100 m elevational range. Eight plots (10 m × 10 m) were sampled in each band, resulting into a total of 40 plots. In each plot, all R. campanulatum individuals and co-occurring tree species were counted. From each elevation, R. campanulatum leaf samples were collected to determine leaf dimensions, leaf density, specific leaf area (SLA), and stomatal density (SD). Results: The density-diameter curve indicated that R. campanulatum was regenerating well, with enhanced regeneration at higher elevation (3,800 m a.s.l.) than at lower. Tree canopy cover appeared to be the major determinant of R. campanulatum regeneration, as indicated by a higher number of seedlings in treeless stands. With increasing elevation, the leaf length, width, SLA, and stomata length decreased but leaf thickness and SD increased. Conclusions: Overall, a higher regeneration and lower SLA with the high SD in the leaves at the upper limit of the species distribution suggested that R. campanulatum is well adapted at its upper distribution range with the possibility of upslope range shift as temperature increases.