DOI QR코드

DOI QR Code

The Resolution of the Digital Terrain Index for the Prediction of Soil Moisture

토양수분 예측을 위한 수치지형 인자와 격자 크기에 대한 연구

  • 한지영 (부산대학교 환경공학과) ;
  • 김상현 (부산대학교 공과대학 환경공학과) ;
  • 김남원 (한국건설기술연구원)
  • Published : 2003.04.01

Abstract

The resolution issue of various soil moisture prediction parameters such as wetness index and curvatures is addressed. The sensitivities of various index are discussed on the base of the statistical aspects. The statistical analysis of three flow determination algorithms on the DEM is performed. The upslope area associated with SFD algorithm appear to more sensitive than the parameters of the other algorithms(MFD, DEMON). The wetness index shows relatively less variation both in resolution and the calculation Procedures.

여러 가지 토양수분의 예측인자에 대한 해상도 문제를 고찰하였다. 다양한 인자에 대한 민감도는 통계적인 분석을 기반으로 논의되었다. 수치지형모형에서 세 가지 흐름 결정 알고리즘의 해상도에 대한 통계적인 분석이 수행되었다. 단방향 흐름알고리즘으로 계산한 상부사면 기여면적은 다른 두 알고리즘(다방향 알고리즘, DEMON)보다 더욱 민감한 것으로 나타났다. 습윤지수의 경우는 해상도나 계산과정의 변화에 상대적으로 민감도가 미소한 것으로 나타났다.

Keywords

References

  1. 박재현, 윤성용, 김상준, 선우중호 (1997). 'TDR (Time Domain Reflectometry)을 이용한 토양함수량의측정' 한국수자원학회논문집, 제30권, 제6호, pp. 587-595
  2. 운용남 (2000) 공업수문학, 청문각, pp. 142-152
  3. 이학수, 김경현, 한지영, 김상현 (2001). '수치 지형인자를 활용한 토양수분분포 예측' 한국수자원학회논문집, 제34권, 제4호, pp. 391-401
  4. Beven and Kirkby (1979). 'A physically-based variable contributing area model of basin hydrology.' Hydrol Sci. Bull, Vol. 24, pp. 43-69 https://doi.org/10.1080/02626667909491834
  5. Beven, K J, Lamb, Quinn, Rorrinowicz. and Freer (1995). 'TOPMODEL : Computer Model ofWatershed Hydrology.', Water Resour. Publicaton, pp. 625-668
  6. Burt and Butcher (1985). 'Topographic controls of soil moisture distributions.' Journal of SoilScience, Vol. 36, pp. 469-486 https://doi.org/10.1111/j.1365-2389.1985.tb00351.x
  7. Costa-Cabral and Burges (1994). 'Digital elevation model networks(DEMON); A model of flowover hillslopes for computation of contributing and dispersal area.' Water Resour. Res., Vol 30,pp. 1681-1692 https://doi.org/10.1029/93WR03512
  8. Gallant and Wilson (1996). 'TAPES-G: A grid-based terrain analysis program for the environmental sciences.' Computers & Geosciences, Vol. 22, No. 7, pp. 713-722 https://doi.org/10.1016/0098-3004(96)00002-7
  9. Grayson and Bloschl (2000). Spatial Patterns in Catchment Hydrology. Cambridge university press, p.61-63
  10. Grayson, R. B., Moore, I.D., and Mcmahon (1992). 'Physically based hydrologic modeling. 1. Aterrain-based for investigative purposes.' Water Resour. Res., Vol. 10, pp.2639-2658
  11. Kuo, Steenhuis, McCulloc, Mohler, Weintein, DeGloria and Swaney (1999). 'Effect of grid size onrunoff and soil moisture for a variable-source-area hydrology model.' Water Resour. Res., Vol.35, No.11, pp. 3419-3428 https://doi.org/10.1029/1999WR900183
  12. Mitasova and Hofierka (1993). 'Interpolation by Regularized Spline with Tension: II. Application to Terrain Modeling and Surface Geometry Analysis.' Mathematical Geology, Vol. 25. No. 6. pp. 657-669 https://doi.org/10.1007/BF00893172
  13. Moore, I.D., Lewis, A., and Gallant, J. C. (1993). 'Terrain attributes: estimation methods and scaleeffects, in Jakeman.' Modelling Change in Environmental Systems, John Wiley and Sons Ltd,New York, Ch. 8
  14. O'Callaghan and Mark (1984). 'The extraction of drainage networks from digital elevation data.' Comput. Vision Graphes Image Process., Vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  15. O'Loughlin and E.M. (1986) 'Prediction of surface saturation zones in natural catchments bytopographic analysis' Water Resour. Res., Vol. 22, No.5, pp. 794-804 https://doi.org/10.1029/WR022i005p00794
  16. Quinn, F., Beven, J., Chevallier, P. and Planchon (1991). 'The prediction of hillslope flowpaths fordistributed modelling using digital terrain models' Hydrol. Process., Vol 5, pp. 59-80 https://doi.org/10.1002/hyp.3360050106
  17. Saulnier, Obled and Beven (1997), 'Analytical compensation between DTM grid resolution andeffective values of saturated hydraulic conductivity within the TOPMODEL framework.', Hydrol. Process., Vol. 11, pp. 1331-1346 https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1331::AID-HYP563>3.0.CO;2-9
  18. Seyfried and Wilcox (1995). 'Scale and the nature of spatial variability: Field examples havingimplications for hydrologic modeling.' Water Resour. Res., Vol. 31, No. 1, pp. 173-184 https://doi.org/10.1029/94WR02025
  19. Sivaplan and Kalma (1995). 'Scale issues in Hydrological modelling.' Hohn Wiley & Sons., Editedby Kalma and Sivaplan, pp. 1-8
  20. Watson,Grayson, Vertessy and McMahon (1998). 'Large-scale distribution modelling and theutility of detailed ground data.' Hydrol. Process., Vol. 12. pp. 873-888 https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<873::AID-HYP660>3.0.CO;2-A
  21. Wolock and Price (1994). 'Effects of digital elevation model map scale and data resolution on atopography-based watershed model.' Water Resour. Res., Vol. 30, No. 77, pp. 3041-3052 https://doi.org/10.1029/94WR01971
  22. Yeh and Eltahir (1998). 'Stochastic analysis of the relationship between topography and the spatial distribution of soil moisture.' Water Resour. Res., Vol. 34, No. 5, pp. 1251-1263 https://doi.org/10.1029/98WR00093
  23. Zhang and Montgomer (1994). 'Digital elevation model grid size, landscape representation, andhydrologic simulations.', Water Resour. Res., Vol. 30, No. 4, pp. 1019-1028 https://doi.org/10.1029/93WR03553
  24. Zhou, Shimada and Sato (2001). 'Three-dimensional spatial and temporal monitoring of soil watercontent using electrical resistivity tomography.' Water Resour. Res., Vol. 37, No.2, pp. 273-285 https://doi.org/10.1029/2000WR900284

Cited by

  1. Applicability Analysis of Water Provisioning Services Quantification Models of Forest Ecosystem vol.17, pp.4, 2014, https://doi.org/10.13087/kosert.2014.17.4.1