• 제목/요약/키워드: upright column

검색결과 10건 처리시간 0.031초

Sway buckling of down-aisle, spliced, unbraced pallet rack structures

  • Beale, R.G.;Godley, M.H.R.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.307-320
    • /
    • 2003
  • This paper presents an efficient approach to the determination of the buckling loads of down-aisle, spliced, unbraced, pallet rack structures subjected to vertical and horizontal loads. A pallet rack structures is analysed by considering the stability equations of an equivalent free-sway column. The effects of semi-rigid beam-to-upright, splice-to-upright and base-plate-to-upright connections are fully incorporated into the analysis. Each section of upright between successive beam levels in the pallet rack is considered to be a single column element with two rotational degrees of freedom. A computer algebra package was used to determine modified stability equations for column elements containing splices. The influence of the position of splices in a pallet rack is clearly demonstrated.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

인간공학이 의자디자인에 미치는 영향에 관한 연구 (The Ergonomic Perspectives on Chair Design)

  • 김명태;김정호
    • 한국가구학회지
    • /
    • 제13권2호
    • /
    • pp.53-62
    • /
    • 2002
  • Due to the industrial development some scholars insist that homo sapiens has become a new race--homo sedens. Since this great degree of behavioral change often cause problems in the spinal column, the appropriate sitting became critical. The nineteenth-century idea of sitting upright position is not considered as a proper sitting any longer. Recent studies by such psychological scientists as A. C. Mandal, Ernest McCormick, and Karl Kroemer show that the spinal column in s-curve with forward bends should be efficiently supported in that manner. Designing a chair sometimes focuses on aesthetic points rather than true ergonomic considerations. Therefore, these result in deleterious effects on human bodies such as lordosis and kyphosis. In fact, it has been overlooked due to the lack of technical and scientific supports. Also, in a mass production, it is hard to meet everyone's need. However, the well adapted ergonomic considerations should meet the needs for wide ranges of people. Indeed, in this study we will examine designing chairs in ergonomic perspectives and suggest additional controversial points and alternatives.

  • PDF

Estimation of moment and rotation of steel rack connections using extreme learning machine

  • Shariati, Mahdi;Trung, Nguyen Thoi;Wakil, Karzan;Mehrabi, Peyman;Safa, Maryam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.427-435
    • /
    • 2019
  • The estimation of moment and rotation in steel rack connections could be significantly helpful parameters for designers and constructors in the initial designing and construction phases. Accordingly, Extreme Learning Machine (ELM) has been optimized to estimate the moment and rotation in steel rack connection based on variable input characteristics as beam depth, column thickness, connector depth, moment and loading. The prediction and estimating of ELM has been juxtaposed with genetic programming (GP) and artificial neural networks (ANNs) methods. Test outcomes have indicated a surpass in accuracy predicting and the capability of generalization in ELM approach than GP or ANN. Therefore, the application of ELM has been basically promised as an alternative way to estimate the moment and rotation of steel rack connection. Further particulars are presented in details in results and discussion.

Investigation on the monotonic behavior of the steel rack upright-beam column connection

  • Cao, Yan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alaskar, Abdulaziz;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.103-115
    • /
    • 2020
  • The cold-formed steel storage racks are extensively employed in various industries applications such as storing products in reliable places and storehouses before distribution to the market. Racking systems lose their stability under lateral loads, such as seismic actions due to the slenderness of elements and low ductility. This justifies a need for more investigation on methods to improve their behavior and increase their capacity to survive medium to severe loads. A standardized connection could be obtained through investigation on the moment resistance, value of original rotational stiffness, ductility, and failure mode of the connection. A total of six monotonic tests were carried out to determine the behavior of the connection of straight 2.0 mm, and 2.6 mm thickness connects to 5 lug end connectors. Then, the obtained results are benched mark as the original data. Furthermore, an extreme learning machine (ELM) technique has been employed to verify and predict both moment and rotation results. Out of 4 connections, increase the ultimate moment resistance of connection by 13% and 18% for 2.0 mm and 2.6 mm upright connection, respectively.

요추후만증을 가진 여자 노인 환자의 정적 척추부하 검사와 허리신전근력과의 관계 (A study on the relationship of lumbar extensor muscle power and static spinal loaded test for old female patients with lumbar degenerative kyphosis)

  • 김성호;김명준
    • 대한정형도수물리치료학회지
    • /
    • 제9권1호
    • /
    • pp.29-38
    • /
    • 2003
  • The purpose of this study was to investigate relationship of lumbar extensor muscle power & spinal column curve for old female patients with LDK(Lumbar degenerative kyphosis). Subjects were composed of 37 old female with LDK. The subjects were tested in their spinal segment movement and spinal column curve with Spinal-$Mouse^{\leq}$ in $1^{st}$ loaded test and $2^{nd}$ loaded test and then tested lumbar extensor muscle power with $Medx^{\leq}$ lumbar extension machine. The results of this study, were as follow; There were statistically significant difference $1^{st}$ loaded test and $2^{nd}$ loaded test in upright position increase spinal column forwardly(p<0.01) and decrease lumbar lordosis angle(p<0.01), but no statistically significant difference $1^{st}$ loaded test and $2^{nd}$ loaded test thoracic and hip & sacrum curve angle. Their lumbar extensor muscle poser is very weakness, 61.4% of normal people.

  • PDF

골반의 운동학적 고찰 (A Comprehensive Kinematic Approach to Pelvis)

  • 배성수;김태윤;정현애;배주한
    • The Journal of Korean Physical Therapy
    • /
    • 제11권2호
    • /
    • pp.93-102
    • /
    • 1999
  • Alignment of the hip joint and pelvis affects it's weight-bearing capabilities as well as the motion available at the joints. The normal hip joint is well designed to withstand the forces that act through and around it, assisted by the trabecular systems, cartilagious, muscles, and ligaments. Alterations in the direction or magnitude of forces action around the injury and degenerative changes. The integration of motion of the pelvis with motion of the vertebral column not only increases the ROM available to the total column but also reduces the amount of flexibility required of the lumbar lesion. In any instance in which there is normal or abnormal pelvic motion during weight hearing and the head must remain upright, compensatory motions of the lumber spine will occur if available. The motions that occur at the hip, pelvis, and lumbar spine during forward trunk bending with the motions that occur during anterior and posterior tilting of the pelvis in the erect standing postion.

  • PDF

Behavior of steel storage pallet racking connection - A review

  • Chen, Chulin;Shi, Lei;Shariati, Mahdi;Toghroli, Ali;Mohamad, Edy Tonnizam;Bui, Dieu Tien;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.457-469
    • /
    • 2019
  • Steel pallet racking industry has globally used from the industrial revolution and has deeply evolved from hot-rolled profile into cold-formed profile to raise the optimization in engineering field. Nowadays, some studies regarding cold-formed steel profile have been performed, but fewer studies in terms of cold-formed pallet racking specifically in connection due to the semi-rigid behavior by lug-hooked into the upright have been conducted. The objective of this study is to review the related literature on steel storage racking connection behavior.

추간판이 물리적 자극의 수용기 역할을 하는 경우 기립 상태에서 복압 및 복근의 역할이 척추 안전성에 미치는 영향 (Effects of Abdominal Muscle and Pressure on the Spine Stability during Upright Stance Posture - For the Case where Intervertebral Disc Plays the Role of Mechanoreceptor)

  • 최혜원;김영은
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.115-122
    • /
    • 2011
  • Recently, we have proposed a hypothesis that spinal structures have a stress sensor driving feedback mechanism, In the human spine, spinal structure could react to modify muscular action in such a way so as to equalize stress at the disc, therefore reduce the risk of injury, In this analysis, abdominal muscle and abdominal pressure, which were not included in the previous study, were added to identify those effects in spine stability during upright stance posture for the case where the intervertebral disc plays the role of mechanoreceptor, The musculoskeletal FE model was consisted with detailed whole lumbar spine, pelvis, sacrum, coccyx and simplified trunk model. Muscle architecture with 46 local muscles containing paraspinal muscle and 6 rectus abdominal muscles were assigned according to the acting directions. The magnitude of 4kPa was considered for abdominal pressure. Minimization of the nucleus pressure deviation and annulus fiber average tension stress deviation was chosen for cost function. Developed model provide nice coincidence with in-vivo measurement (nucleus pressure). Analysis was conducted according to existence of co-activation of abdominal muscle and abdominal pressure. Antagonistic activity of abdominal muscle produced stability of spinal column with relatively small amount of total muscle force. In contrast to the abdominal muscle, effect of abdominal pressure was not clear that was partly depending on the assumption of constant abdominal pressure.

직립상태 시 요추 운동분절의 유합에 따른 척추주변 근력의 변화 (Variation of Paraspinal Muscle Forces according to the Lumbar Motion Segment Fusion during Upright Stance Posture)

  • 김영은;최혜원
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.130-136
    • /
    • 2010
  • For stability analysis of the lumbar spine, the hypothesis presented is that the disc has stress sensors driving feedback mechanism, which could react to the imposed loads by adjusting the contraction of the muscles. Fusion in the motion segment of the lumbar spinal column is believed to alter the stability of the spinal column. To identify this effect finite element (FE) models combined with optimization technique was applied and quantify the role of each muscle and reaction forces in the spinal column with respect to the fusion level. The musculoskeletal FE model was consisted with detailed whole lumbar spine, pelvis, sacrum, coccyx and simplified trunk model. Vertebral body and pelvis were modeled as a rigid body and the rib cage was constructed with rigid truss element for the computational efficiency. Spinal fusion model was applied to L3-L4, L4-L5, L5-S1 (single level) and L3-L5 (two levels) segments. Muscle architecture with 46 local muscles was used as acting directions. Minimization of the nucleus pressure deviation and annulus fiber average axial stress deviation was selected for cost function. As a result, spinal fusion produced reaction changes at each motion segment as well as contribution of each muscle. Longissimus thoracis and psoas major muscle showed dramatic changes for the cases of L5-S1 and L3-L5 level fusion. Muscle force change at each muscle also generated relatively high nucleus pressure not only at the adjacent level but at another level, which can explain disc degeneration pattern observed in clinical study.