• Title/Summary/Keyword: upper to zero in D[X]

Search Result 4, Processing Time 0.015 seconds

Kaplansky-type Theorems, II

  • Chang, Gyu-Whan;Kim, Hwan-Koo
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.339-344
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, and D[X] be the polynomial ring over D. A prime ideal Q of D[X] is called an upper to zero in D[X] if Q = fK[X] ${\cap}$ D[X] for some f ${\in}$ D[X]. In this paper, we study integral domains D such that every upper to zero in D[X] contains a prime element (resp., a primary element, a t-invertible primary ideal, an invertible primary ideal).

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.525-530
    • /
    • 2015
  • Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.

ALMOST SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A PID

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • Let D be an integral domain, S be a multiplicative subset of D such that DS is a PID, and D[X] be the polynomial ring over D. We show that S is an almost splitting set in D if and only if every nonzero prime ideal of D disjoint from S contains a primary element. We use this result to give a simple proof of the known result that D is a UMT-domain and Cl(D[X]) is torsion if and only if each upper to zero in D[X] contains a primary element.

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.