• Title/Summary/Keyword: upper crust

Search Result 75, Processing Time 0.02 seconds

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Geochemical Composition of the Continental Crust in Korean Peninsula (한반도 지각암류의 지구화학적 특성)

  • Lee, Seung-Gu;Kim, Dong-Yeon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.113-128
    • /
    • 2012
  • The chemical composition of the continental crust play an important role in understanding of crustal formation and evolution and quantifying other processes taking place within continental crust. We summarized geochemical data reported in the previous literature for the crustal rocks in the Korean Peninsula and divided their chemical composition into geologic time scale. In the variation diagram normalized by average composition of the upper crustal rocks, the geochemical characteristics of the upper crust during Triassic period is different from those of the upper crustal rocks after Jurassic period or before Precambrian. However, the geochemical characteristics of the Jurassic and Precambrian period are similar each other. Our summarized data indicate that the source material of Triassic upper crust may be different from that of Jurassic or Precambrian upper crust.

Crustal Structure of the Southern Part of Korea (한국(韓國) 남부지역(南部地域)의 지각구조(地殼構造))

  • Kim, Sung Kyun;Jung, Bu Hung
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 1985
  • Events detected by the KIER microearthquake network operated in the Southern Part of Korea for 265 days in 1982~1984 were reviewed, and some of them were identified to be a dynamite explosion from several construction sites. The purpose of the present work is to determine the crustal structure of the Southern Korea using the time-destance data obtained from such explosion seismic records. The time·distance data can be well explained by a crustal model composed of four horizontal layers of which thickness, p and s-wave velocity ($V_p$ and $V_s$) are characterized as follows. 1st layer (surface) ; 0~2km, $V_p=5.5km/sec$, $V_s=3.3km/sec$ 2nd layer (upper crust) ; 2~15km, $V_p=6.0km/sec$, $V_s=3.5km/sec$ 3rd layer (lower crust) ; 15~29km, $V_p=6.6km/sec$, $V_s=3.7km/sec$ 4th layer (upper mantle) ; 29km~ , $V_p=7.7km/sec$, $V_s=4.3km/sec$ The relatively shallow crust·mantle boundary and low $P_n$ velocity compared with the mean values for stable intraplate region are noteworthy. Supposedely, it is responsible for the high heat flow in the South-eastern Korea or an anomalous subterranean mantle. The mean $V_p/V_s$ ratio calculated from the relation between p-wave arrival and s-p arrival times appears to be 1.735 which is nearly equivalent to the elastic medium of ${\lambda}={\mu}$. However, the ratio tends to be slightly larger with the depth. The ratio is rather high compared with that of the adjacent Japanese Island, and the fact suggests that the underlying crust and upper mantle in this region are more ductile and hence the earthquake occurrences are apt to be interrupted. As an alternative curstal model, a seismic velocity structure in which velocities are successively increased with the depth is also proposed by the inversion of the time·distance data. With the velocity profile, it is possible to calculate a travel time table which is appropriate to determine the earthquake parameters for the local events.

  • PDF

3-D Crustal Velocity Tomography in the Central Korean Peninsula (한반도 중부지역의 3차원 속도 모델 토모그래피 연구)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.235-247
    • /
    • 1998
  • A new technique of simultaneons inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the center of the Korean Peninsula including Pyongnam Basin, Kyonggi Massif, Okchon Fold Zone, Taebaeksan Fold Zone, Ryongnam Massif and Kyongsang Basin. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 32 events with 404 seismic rays are inverted for locations and crustal structure. 5 ($1^{\circ}$ along the latitude)${\times}6$ ($0.5^{\circ}$ along the longitude) ${\times}8$ block (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from the surface to the Moho, eight profiles along latitude and longitude and the Moho depth distribution was determined. The results are as follows: (1) the average velocity and thickness of sediment are 5.15 km/sec and 3-4 km, and the velocity of basement is 6.12 km/sec. (2) the velocities fluctuate strongly in the upper crust, and the velocity distribution of the lower crust under Conrad appears basically horizontal. (3) the average depth of Moho is 29.8 km and velocity is 7.97 km/sec. (4) from the sedimentary depth and velocity, basement thickness and velocity, form of the upper crust, the Moho depth and form of the remarkable crustal velocity differences among Pyongnam Basin, Kyonggi Massif, Okchon Zone, Ryongnam Massif and Kyongsang Basin can be found. (5) The different crustal features of ocean and continent crust are obvious. (6) Some deep index of the Chugaryong Rift Zone can be located from the cross section profiles. (7) We note that there are big anisotropy bodies near north of Seoul and Hongsung in the upper crust, implying that they may be related to the Chugaryong Rift Zone and deep fault systems.

  • PDF

The characteristics of upper crust below the southern Korean Peninsula by using 3-D tomography (3차원 토모그래피 방법으로 본 한반도 남부지역의 상부지각 속도 특성)

  • Park, Jung-Ho;Kang, Ik-Bum
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.64-69
    • /
    • 2006
  • At starting point, 1D velocity models were inverted by using 430 events with P-wave 5147, S-wave 3729 from KIGAM, KMA, KEPRI, and KINS's seismic networks. A minimum 1D model shows that P-wave velocities are around $6.0{\pm}0.5\;km/s$ slowly increasing with depth between surface and 15 km. The velocities are about $6.4{\pm}0.2\;km/s$ below 15km to 35km. The earthquake data number for 3D tomography was 630 adding to previous 430 events with limitation of more than 6 station detection and relocation stability of location. The checkerboard test shows that only upper curst part from surface to 17 km have reliable resolution. The results of upper crust part present that the boundary of Gyeong-sang basin and Youngnam massif is mach well velocity variation pattern. The western part of the basin is shown as lower velocity and south-eastern part as higher. This is because that sedimentary rocks are widely located around western part of the basin and volcanic origin rocks are distributed around south-eastern part.

  • PDF

1-D Deep Resistivity Structure of the Korean Peninsula Using Magnetotelluric(MT) Data (MT 자료를 이용한 한반도의 심부 1차원 전기비저항 구조 연구)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Chun-Ki;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.153-164
    • /
    • 2009
  • We examined the regional 1-D deep resistivity structure of the Korean Peninsula using MT data acquired at seven sites located in the Kyongsang Basin and Kyonggi Massif. At the sites located in the Kyongsang Basin, surrounding sea distorts observed MT response and hence this distortion, so called "sea effect", is corrected using an iterative tensor stripping method. The 1-D layered inversion results for the seven MT sites reveal 4 layered structure, which is composed of 1) near surface layer, 2) upper crust, 3) lower crust and upper mantle, and 4) asthenosphere from the surface downward. Conrad interface, which is a boundary between upper and lower crust, is distinctly identified beneath all the MT sites. Conrad interface depth is estimated to about be 17km in the Kyongsang Basin and about 12km in the Kyonggi Massif, while the upper crust of the Kyongsang Basin is about 5 times more resistive than that of the Kyonggi Massif. Finally, asthenosphere is inferred to exist below a depth of approximately 100km with a resistivity of 200-300 ohm-m.

Two-dimensional Inversion of Sea-effect-corrected Magnetotelluric (MT) Data in Jeju Island (해양효과가 보정된 제주도 자기지전류 탐사 자료의 2차원 역산)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Choon-Ki;Park, Gye-Soon
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.602-612
    • /
    • 2011
  • Jeju Island, a volcanic island located in South Korea, has been one of the main targets of geophysical and/or geological studies because of its tectonic importance related to the volcanism and tectonic link to the southern part of the Korean Peninsula. Recently, as a number of broad-band magnetotelluric (MT) measurements were made, we have examined the deep part of the island. In such an insular setting, it is not easy to properly recover the deep structures such as the lower crust and the upper crust using MT data, because their low-frequency components are strongly affected by the surrounding sea of the island. In this study, we apply the sea-effect correction to the existing MT data collected at a total of 102 sites in Jeju Island. The sea-effect correction makes remarkable changes in the observed MT data at frequencies below 1 Hz, clearly indicating the existence of a conductive lower crust. The 2-D inversion results for both Jeju Southern Line (JSL) and Jeju Northern Line (JNL) show that the transition zone separating the resistive upper crust and conductive lower crust exists at a depth of 20 km on average.

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF

Nd Model Age and Nd Isotopic Evidence of Granitoid Rocks in the Gwangju-Naju Area, Korea (광주-나주지역 화강암류에 대한 네오디움 표본연령 및 동위원소 특성연구)

  • Park, Young Seog
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.153-161
    • /
    • 1997
  • Diagrams of $^{87}Sr/^{86}Sr$ versus Ba/Nb and MgO/FeO are scattered, and $^{87}Sr/^{86}Sr$ variation with the increase of $SiO_2$ are scattered in Gwangju granitoid. Diagrams of $(^{87}Sr/^{86}Sr)$i versus $(^{143}Nd/^{144}Nd)$i and ${\varepsilon}Nd$ versus 1/Nd variation are also scattered in Gwangju granitoid. It shows that the source magma of Gwangju granitoid are derived from partial melting materials of heterogeneous upper crust. Very low ${\varepsilon}Nd$ values (-15.19~-19.49) and very high ${\varepsilon}Sr$ values (92.72~308.85) mean that the source magma of Gwangju granitoid is derived from sedimentary substance melting. According to $(^{87}Sr/^{86}Sr)$ 180Ma, and the plot of ${\varepsilon}Sr$ versus ${\varepsilon}Nd$, the Gwangju granitoid shows that the source magma is derived from upper crust materials. Nd model ages of Gwangju granitoid (1.82~2.42G.A.) are older than meta-sediments of Okcheon formation (1.15~1.60G.A.) and similar or close to Pre-Cambrian gneiss complex of Ryoungnam massif (2.17~2.47G.A.or 2.11~2.38G.A.).Therefore, the source magma of the Gwangju granitoid could be derived from the partial melting of Pre-Cambrian gneiss complex of Ryoungnam massif.

  • PDF