• Title/Summary/Keyword: upper bound elemental technique

Search Result 26, Processing Time 0.021 seconds

An Analysis of Near-Net Forging of External Spline by an Upper Bound Elemental Technique (상계요소법에 의한 External Spline의 Near-Net 단조해석)

  • 양정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.206-211
    • /
    • 1996
  • Closed-die forging of external spine is analysed using an upper bound elemental technique. The kinematically admissible velocity field for three-dimensional deformation in forging of the external spine with trapezoidal teeth was obtained. The upper bound to the deforming load necessary and the the deformed configurations are predicted using integration of the formulation of energy expressions which were obtained from B(upset forging method) were considerd in the present analysis and the theoretical results compared with experimental ones Experiments were carried out on plasticine as model material at room temperature where talcum powder was used as a lubricant. The present investigation revealed that the analytical method B predicts a reducet forging load and improved configuration better than method A for the forged products.

  • PDF

Closed-Die Forging Analysis of Clutch Teeth Using An Upper Bound Elemental Technique (상계요소법에 의한 클러치 치형의 밀폐단조해석)

  • 양정호;이상태;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.134-138
    • /
    • 1996
  • A simple kinematically admissible velocity field for closed-die forging of clutch teeth is analysed which takes account of the profiled teeth chosen kinematically by approximating these as straight taper teeth. The upper bound load and the deformed configurations are predicted by the velocity field at varying punch movements considering differing frictional factors. Experiments were carried out using a model material of plasticine at room temperature where talcum powder was used as a lubricant. The theoretical predictions of the forging load and the relative pressures are found to be in reasonably good agreement with the experimental results.

  • PDF

The Improvement of Bearing-Race Forming Process Using UBET Analysis (베어링레이스의 온간성형에서 UBET 해석에 의한 공정개선 및 유동구속조건의 향상)

  • Kim, Young-Ho;Bae, Won-Byong;Park, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.92-100
    • /
    • 1997
  • An upper-bound elemental technique (UBET) analysis is carried out to improve the material flow and to reduce the load of bearing-race forming process. The UBET analysis, which adapts the advantages of stream function and finite element method, is useful for predicting the profile of complex geometric bound- ary. From the UBET analysis, the forming load, the velocity distribution and the stream line of the deformed billet are determined by minimizing the total power consumption with respect to chosen parameters. The results of present UBET analysis are better than those of previous UBET analysis. Experiments have been carried out with model material plasticine billets at room temperature. The theoretical predictions for forming load and flow pattern(stream line) are in good agreement with the experimental results.

  • PDF

Closed-Die Forging Analysis of Spling-LikeComponents (스플라인 기어류의 폐쇄단조 해석)

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.187-194
    • /
    • 1999
  • Closed-die forging of spline was analysed using the upper bound elemental technique, Two different forging methods, denoted here as side extrusion-forging and upset forging, were proposed, The kinematically admissible velocity fields for each of the forging methods, which could express trapezoidal, rectangular and serration tooth forms, were presented. Upper bounds to forging loads and deformed configurations were predicted using the velocity fields. Theoretical results were compared with experimental ones. Experiments with lead were carried out at room temperature where grease was used as a lubricant. The present investigation revealed that analytical forging loads were reduced by using the side extrusion-forging but the upset forging could improve configuration of the final forged splines.

  • PDF

Analysis of profile ring rolling for rings having V-groove of trapezoidal protrusion by the upper-bound elemental technique (사다리꼴 모양의 돌기나 V형 홈을 갖는 형상 환상압연에 대한 UBET 해석)

  • Hahn, Young-Ho;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • To diversify the area of application of UBET to the analysis of ring rolling which produces rings having more complex cross-sectional configuration, an element of triangular cross-section has been introduced and the corresponding kinematically admissible velocity field has been derived while considering the material flow between neighboring elements. The theoretical perdictions in roll torque and profile formation show good agreement with the experiments. The effect of process parameters such as feed rate and taper angle of the roll groove has been discussed.

  • PDF

A Study on the Drawing of Strip by Upper Bound Elemental Technique (상계요소법에 의한 판재 인발공정에 관한 연구)

  • Hur, K.D.;Choi, Y.;Choi, I.K.
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • For metal forming analysis, upper-bound solution is a practical method because the solution is overestimated. However it is not easy to determine the stresses on dies by using upper-bound solution. In this study, new scheme to calculate the stresses on dies based on upper bound solution is proposed. In the velocity fields, imaginary velocity is adapted to analyze the normal pressure on die surfaces. To verify the proposed scheme. plane strain drawing has been considered. The stresses on dies obtained by the proposed scheme are compared with the results of rigid plastic FEM and the experimental results. In the experiments, pressure film is used to measure the normal pressure on dies.

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대학 UBET해석)

  • Lee, Hee-In;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-181
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extrude length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shape punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대한 UBET 해석)

  • 황범철;이희인;배원병
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1129-1133
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extruded length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shaped punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

Upper Bound Analysis for Near-net Shape Forging of a Crown Gear Form

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.94-104
    • /
    • 2000
  • A kinematically admissible velocity field for near-net shape forging of a crown gear form is proposed. This takes into account the profiled shape of the teeth chosen by approximating these kinematically as radially straight taper teeth, (rectangular and trapezoidal teeth). The upper bound to the forging load, the relative forging pressure and the deformed configurations, with both the initially solid circular cylindrical and hollow billets, are predicted using the velocity field at varying incremental punch movements considering differing frictional factors. These and other results are given and commented upon.

  • PDF

A Basic Study on the Piston Forging Process

  • Kim, Young-Ho;Bae, Won-Byong;Kim, Jae-Cheol;Kim, Hyeong-Sik
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.177-181
    • /
    • 1996
  • A fundamental study for the production of an internal combustion engine piston by forging is performed through UBET(Upper Bound Elemental Technique) analysis and experiments. In UBET analysis, an optimal preform of the aluminum piston is predicted and the results are compared with the experimental results. The internal flow pattern and and the forging loads according to the different friction condition are investigated.

  • PDF