• Title/Summary/Keyword: upper arm angle

Search Result 77, Processing Time 0.157 seconds

A Study on the Mechanism of Arm Surface Changes for the development of Sleeve Drafting Standard (소매설계기준 개발을 위한 상지체표변화구조에 관한 연구)

  • 최해주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.852-859
    • /
    • 1996
  • The factors and mechanism of arm surface changes were analyzed by regression analysis for the relationship between changes in arm joint angle and arm surface changes, according to the direction of upper extremity motion. Body surface change patterns among subjects were tested also. Experiments were carried out on 3 female subjects of different body types to examine 26 motions in 4 directions for 4 upper extremity parts. The major conclusions of the study are as follows: 1. The expansion or contraction of arm surface length depends on the direction of upper extremity motion. 2. Arm surface length changes by linear expansion or contraction according to the joint angle of the direction of motion. The mechanism of arm surface changes is represented by a linear relation between arm surface changes and the (actors of the direction of upper extremity motion and arm joint angle. 3. Arm surface length shows the same pattern of body surface changes regardless of body type. A quantitative model of body surface changes at upper extremity should be developed for functional sleeve design.

  • PDF

Effect of Trunk and Upper Arm Angle on Lifting Capacity

  • Chang, Seong Rok
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.32-35
    • /
    • 2011
  • Lifting capacity and difficulty of task are influenced by body posture. In RULA and REBA, the body was divided into segments which formed two groups, A and B. Group A includes the upper and lower arm and wrist while group B includes the neck, trunk and legs. This ensures that whole body posture is recorded so that any awkward or constrained posture of the legs, trunk or neck which might influence the posture of the upper limb. This study aimed to measure MVC (maximum voluntary contraction) and subjective judgment in psychophysical method (Borg's scale) according to trunk and upper arm angle and to analyze results statistically. The results of this study were that lifting capacity was more influenced by interaction of body posture rather than angles of each part, and MVC variation according to trunk and upper arms angles should different patterns. This means that we consider the interaction of trunk angles and upper arm angles when we access risk factors of the postures. This survey would be also the basic data to evaluate difficulty of lifting tasks according to body postures ergonomically.

  • PDF

Ergonomic Studies of Arm Shapes and Sleeves : Arm length depending on Arm movements (상지 형태와 의복소매에 관한 인간 공학적 연구(제2보) - 동작에 의한 상지 길이 변화 -)

  • Jo, Gyeong-Ae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.91-108
    • /
    • 1999
  • In our previous work using a motion analyzer and 3-dimensional sonic digitizer, the arm shapes for 23 women in their early twenties were classified into three characteristic types. In order to design sleeves, suitable for arm movements for the three characteristic arm shapes, a relationship between arm length variation and shoulder/elbow angles has been investigated for four cases of arm movements (flexion, extension, adduction and abduction). Each arm movement can be characterized by the changes in shoulder angle and the changes in elbow angle at the maximal shoulder angle. In all the four cases of arm movements, the changes of shoulder length and cap height are largest at the maximal shoulder angle. These changes were little affected by changes in elbow angle. The changes in the lower arm length and the difference between cap height and upper arm length are the largest at the maximal elbow angle of the maximal shoulder angle. There is a linear relationship between cap height and shoulder angle during arm movements; thus, in designing sleeves the cap height can be determined from the regression of cap height vs. shoulder angle.

  • PDF

A Study of the Effects of the Trunk Angles and the Upper Ann Angles on Workloads in the Lifting Work (들기작업 시 몸통각도와 상완각도가 작업부담에 미치는 영향에 관한 연구)

  • Chang, Seong-Rok;Park, Hyung-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.69-75
    • /
    • 2009
  • It is well-known that lifting capacity of a worker is influenced by body posture during the task. When a task analyst make use of RULA and REBA Trunk and upper arm angles are recorded in a separate item. It means that the interaction between the angles of two body segments may be ignored in a final score. The NLE(NIOSH Lifting Equation) has been used to supplement this problem. However, there is no study to validate the result of RWL (Recommended Workload Limit) under the existence of interactions between trunk and upper arm angles. The goal of this study was to assess the effect of the interaction between trunk and upper arm angles. Three responses, including NMVC(normalized maximum voluntary contraction), RWL(Recommended Weight Limit) and subjective judgment in psychophysical method (Borg's scale), were recorded according to the combinations of three trunk angles and nine upper arm angles. The results showed that lifting capacity is highly influenced by interaction of two body segments(trunk and upper arm). It means that the task workload has to be analyzed along with the interaction of trunk angles and upper arm angles when the task analyst assesses potential risk factors on the postures. This study may be able to be a fundamental study to develop an assessment method for lifting task analyses according to body postures.

The Effects of Upper Limb, Trunk, and Pelvis Movements on Apkubi Momtong Baro Jireugi Velocity in Taekwondo

  • Yoo, Si-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.273-284
    • /
    • 2016
  • Objective: The purpose of this study was to investigate effects of upper limb, trunk, and pelvis kinematic variables on the velocity of Apkubi Momtong Baro Jireugi in Taekwondo. Method: Twenty Taekwondo Poomsae athletes (age: $20.8{\pm}2.2years$, height: $171.5{\pm}7.0cm$, body weight: $66.2{\pm}8.0kg$) participated in this study. The variables were upper limb velocity and acceleration; trunk angle, angular velocity, and angular acceleration; pelvis angle, angular velocity, and angular acceleration; and waist angle, angular velocity, and angular acceleration. Pearson's correlation coefficient was calculated for Jireugi velocity and kinematic variables; multiple regression analysis was performed to investigate influence on Jireugi velocity. Results: Angular trunk acceleration and linear upper arm punching acceleration had significant effects on Jireugi velocity (p<.05). Conclusion: We affirmed that angular trunk acceleration and linear upper arm punching acceleration increase the Jireugi velocity.

A Clothing-Ergonomics Study on the Variation of Upper Arm Skin Surface According to Arm Movements - on the arm movements to the vertical direction in front and in side - (신체동작에 따른 상지형태변화에 관한 피복인간공학적 연구 - 전방수직동작과 측방수직동작을 중심으로 -)

  • Kim Hae-Kyung;Park Eun-Joo;Jeon Eun-Kyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.1 s.29
    • /
    • pp.49-58
    • /
    • 1989
  • A clothing-erogonomics study was performed to investigate the difference of the upper arm skin skin surface and the relationship among the three aspects of upper arm (height of sleeve rap, sleeve width and armhole girth) by changing arm movements. Plaster cast was used for this experimental research. Arm movements consist of 9 types; just carmly standing on ($0^{\circ}$), and each 4 types ($45^{\circ},\;90^{\circ},\;135^{\circ},\;180^{\circ}$) to the vertical direction in front and in side. The results were as follows; 1) As the arm-movement angle increased, the height of sleeve cap decreased and that ratio was largest in the portion A-B3. 2) The steeve width was enlarged with the increment of movement angle in all portions of upper arm except B1-B5. 3) As increasing the movement angle, the whole armhole girth decreased and the ratio o(front armhole girth (F-A) was larger than that of back. 4) In the vertical direction in front, the height o( the sleeve caps was larger, the sleeve widths were smaller than in the vertical direction in side in all movement types, but there was no significant difference in arm-hole girth between the two cases. 5) There were significantly negative relationships between measurements in height of sleeve cap and those in sleeve width, and also between those in height of sleeve cap and in arm-hole girth. And significantly positive relationships were found between neasurements in height of sleeve cap and those in arm-hole girth.

  • PDF

NREH: Upper Extremity Rehabilitation Robot for Various Exercises and Data Collection at Home (NREH: 다양한 운동과 데이터 수집이 가능한 가정용 상지재활로봇)

  • Jun-Yong Song;Seong-Hoon Lee;Won-Kyung Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • In this paper, we introduce an upper extremity rehabilitation robot, NREH (NRC End-effector based Rehabilitation arm at Home). Through NREH, stroke survivors could continuously exercise their upper extremities at home. NREH allows a user to hold the handle of the end-effector of the robot arm. NREH is a end-effector-based robot that moves the arm on a two-dimensional plane, but the tilt angle can be adjusted to mimic a movement similar to that in a three-dimensional space. Depending on the tilting angle, it is possible to perform customized exercises that can adjust the difficulty for each user. The user can sit down facing the robot and perform exercises such as arm reaching. When the user sits 90 degrees sideways, the user can also exercise their arms on a plane parallel to the sagittal plane. NREH was designed to be as simple as possible considering its use at home. By applying error augmentation, the exercise effect can be increased, and assistance force or resistance force can be applied as needed. Using an encoder on two actuators and a force/torque sensor on the end-effector, NREH can continuously collect and analyze the user's movement data.

A Study on the Clothing Pressure variation according to arm movement and ease of basic pattern (신체동작과 의복여유분에 따른 의복압에 대한 탐색적 연구 -견갑골$\cdot$상지를 중심으로-)

  • Cho Jung Mee;Kim Hae Kyuong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.1
    • /
    • pp.11-19
    • /
    • 1987
  • The objectives of this study were: 1. To investigate the relationship between arm movement and clothing pressure in the upper arm and shoulder blade area. 2. To find out the relationship between ease of basic pattern and clothing pressure in the upper arm and shoulder blade area. 3. To study any interaction between arm movement and ease of clothing on the clothing pressure. This study was an experimental research using the measuring devices of clothing pressure. The subjects were the unmarried college women. Arm movements were 3 types($45^{\circ}$, $90^{\circ}$, $135^{\circ}$) to the horizontal direction. The ease of basic pattern in the breast was 3 types(4 cm, 6 cm, 8cm). The statistical analyses used in this study included mean, standard deviation and one-way analysis of variance. The results obtained from this research were as follows; 1. The whole clothing pressure increased as the angle of the arm movement increased. Part of upperarm and shoulder blade above axillar gave high clothing pressure while part of upperarm and shoulder blade above upper breast, low pressure. Difference between highest clothing pressure and lowest clothing pressure increased as the arm movementdid. 2. The whole clothing pressure increased as the ease of the basic pattern in breast decreased. No matter how the ease of basic pattern in the breast area varied, the Points where generally showed high and low pressure were identical. 3. The whole arm pressure increased as the movement angle increased and the ease of pattern in breast area decreased. Difference between highest clothing pressure and lowest clothing pressure increased as the movement angle increased and the ease decreased.

  • PDF

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

The Kinematical Characteristics of the Basic Ballet Position (발레에서 팔 기본 동작의 운동학적 특성)

  • Kim, Eun-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.151-158
    • /
    • 2006
  • The purpose of this study was to find out the kinematical characteristics of arm's basic position in ballet. In order to achieve the purpose of the study, 3D cinematographic analysis was conducted with a ballerina who might performed the perfect arm's basic position. According to the results of this study, it was appeared that the shoulder kept about 78%-82%, the elbow kept about 62%-96%, the wrist kept 52%-109%, and finger kept 48%-110% with the height. Also, movement was formed with $21^{\circ}-77^{\circ}$ of the upper arm angle, $106^{\circ}-164^{\circ}$ of the elbow, $125^{\circ}-140^{\circ}$ of the wrist, and $83^{\circ}-160^{\circ}$ of the shoulder. The left-right ratio of the total arm angle was 98% in the first, second, and third position, and 100% in the forth position. The angle of arm gradient was remained $-68^{\circ}$ in the first position, $-27^{\circ}$ in the second position, $73^{\circ}$ in the third position, and $-11^{\circ}$ in the forth position. Based on the results mentioned above, balance and symmetry of both arms was an important factor in those four positions. Although it is impossible to maintain the position like robot, it may be a good performance if a certain level of extent was remained With respect to this point of view, it may be a good position if the difference between right and left arm in each joint can be remained within 2%. Angle also was an important factor that if the difference in total angle can be remained within 2% it may be an excellent position, there was difference of right and left based on the joint though. Therefore, practice and instruction to make a perfect symmetry as much as possible were needed Also, it would be a good movement if position and angle of joint within 2% difference of right and left arm can be remained In turn, because ballet is movement with expression of the body, beauty of the body and balance of the movement have to be harmonized for beautiful performance. Therefore, it would be a meaningful future study considering the body condition and movement of ballerina to define the beauty.