• Title/Summary/Keyword: uplink OFDMA

Search Result 76, Processing Time 0.018 seconds

Uplink Frequency Offset Compensation Scheme for High-Speed Moving Terminals (고속 이동체를 위한 상향링크 주파수 옵셋 보상 방법)

  • Choi, Sung-woo;Kim, Ilgyu;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1699-1709
    • /
    • 2015
  • Moving terminals like high-speed-train undergo high Doppler frequency shift, and this leads to carrier frequency offsets that have to be compensated to avoid degradation of communication performance. In multiple access mechanism like OFDMA, base-stations need complex hardware to compensate the uplink frequency offset. In this paper, we propose a method, which can reduce burden of the base-station and makes frequency offset estimation and compensation simple. This method contains transmitting new synchronization signal, estimating frequency offsets in base-station, transmitting feedback information to terminal, and compensating the offset in uplink transmission. Simulation results show the proposed method operates well in high Doppler frequency shift conditions of 500 km/h which is the requirements of 5G mobile communication.

An Uplink Scheduling Algorithm for VoIP in IEEE 802.16d Systems (IEEE 802.160에서 상향링크 VoIP 스케줄링 알고리즘 방식 연구)

  • Kang, Min-Seok;Jang, Jae-Shin
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.87-91
    • /
    • 2006
  • With the growth of the internet, the number of wireless internet users has increased continuously up to date. However, mobile communications could not support high speed transmission rate with cheap communication fee and wireless LAN has problems in providing terminal mobility and wide area connectivity, respectively. So the WMAN standard has been newly designed to make up for these limits. The initial 802.16 specification effectively offers a solution for providing fixed users with high speed wireless communication but it does not offer terminal mobility. So the 802.16d and 802.16e have been developed as the next generation solution that can support various PHY layer (SC, SCa, OFDM, OFDMA) and offer the terminal mobility. In this paper, we propose an effective uplink scheduling algorithm for VoIP with using UGS, and we show that our proposed algorithm is superior in view of average delay and management of uplink bandwidth to conventional rtPS algorithm and the scheme in reference, with using NS-2 network simulator.

  • PDF

A V2V Transmission Scheme for Safety Message Dissemination in Platooning (군집주행 차량의 안전 메시지 전달을 위한 V2V 전송 기법)

  • Ahn, Woojin;Hong, Hanseul;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.548-553
    • /
    • 2019
  • Along with advanced vehicle to vehicle (V2V) communication technologies, platooning is regarded as one of the most promising form of autonomous driving solutions in order to increase road capacity. In this paper, we propose a novel V2V transmission scheme for safety message dissemination in platooning. The proposed scheme enhances the efficiency of channel access and multi-vehicle orthogonal frequency division multiple access (OFDMA) transmission by taking advantage of triggered uplink access technique and null data packet feedback report protocol introduced in the sixth generation WLAN standard, IEEE 802.11ax. The simulation results prove that the proposed scheme outperforms the conventional IEEE 802.11 transmission scheme throughout all measured vehicle density range.

An Improved LLR Generation Technique for SC-FDMA Systems Using Frequency Domain MMSE Equalization (주파수 영역 MMSE 등화방식 기반의 SC-FDMA 시스템을 위한 개선된 LLR 생성 기법)

  • Kim, Jin-Min;Im, Tae-Ho;Kim, Jae-Kwon;Yi, Joo-Hyun;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1197-1207
    • /
    • 2009
  • Orthogonal Frequency Division Multiple Access (OFDMA) is widely used as a multiple access technique for next generation mobile communication systems, however, its main drawback is the high peak-to-average ratio (PAPR). Thus for the uplink case where the transmit power is strictly limited due to the battery life of mobile units, single carrier frequency division multiple access (SC-FDMA) with low PAPR is preferred to OFDMA method. In this paper, we propose a method to improve the performance of SC-FDMA using frequency domain MMSE equalization. The proposed improved log-likelihood ratio (LLR) generation method exploits both the diversity characteristic of channels and the reciprocity that is obtained from the received signals. The complexity of the proposed method is analyzed and its performance gain is demonstrated via a set of computer simulations.

DL Radio Transmission Technologies for WRAN Applications : Adaptive Sub-channel Allocation and Stationary Beamforming Algorithms for OFDMA CR System (WRAN 응용을 위한 하향링크 무선전송 방식 : OFDMA 상황인식 시스템에서의 적응 부채널 할당 및 고정 빔 형성 기법)

  • Kim Jung-Ju;Ko Sang-Jun;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.291-303
    • /
    • 2006
  • In this paper, we analyze functional requirements of the IEEE 802.22 WRAN, and propose a downlink 프레임 structure satisfying the requirements. The proposed downlink 프레임 structure maximizes e transmission efficiency by adopting the cognative radio to assign the sub-channel by reflecting the channel environment of WRAN. We also calculate the signalling overhead for both downlink and uplink, and analyze the performances of time synchronization, frequency synchronization and cell identification based on the 프리앰블 in downlink and suggest the channel estimation method tough 프리앰블 or pilot. As a final result, e stationary beamforming (SBF) algorithm with dynamic channel allocation(DCA) is proposed. The proposed OFDMA downlink 프레임 structure with channel adaptive sub-channel allocation for cognitive radio applications is verified to meet the requirements of IEEE 802.22 WRAN, by computer simulations.

Resource Allocation in Full-Duplex OFDMA Networks: Approaches for Full and Limited CSIs

  • Nam, Changwon;Joo, Changhee;Yoon, Sung-Guk;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.913-925
    • /
    • 2016
  • In-band wireless full-duplex is a promising technology that enables a wireless node to transmit and receive at the same time on the same frequency band. Due to the complexity of self-interference cancellation techniques, only base stations (BSs) are expected to be full-duplex capable while user terminals remain as legacy half-duplex nodes in the near future. In this case, two different nodes share a single subchannel, one for uplink and the other for downlink, which causes inter-node interference between them. In this paper, we investigate the joint problem of subchannel assignment and power allocation in a single-cell full-duplex orthogonal frequency division multiple access (OFDMA) network considering the inter-node interference. Specifically, we consider two different scenarios: i) The BS knows full channel state information (CSI), and ii) the BS obtains limited CSI through channel feedbacks from nodes. In the full CSI scenario, we design sequential resource allocation algorithms which assign subchannels first to uplink nodes and then to downlink nodes or vice versa. In the limited CSI scenario, we identify the overhead for channel measurement and feedback in full-duplex networks. Then we propose a novel resource allocation scheme where downlink nodes estimate inter-node interference with low complexity. Through simulation, we evaluate our approaches for full and limited CSIs under various scenarios and identify full-duplex gains in various practical scenarios.

FBLA (Flexible Block-wise Loading Algorithm) for Effective Resource Allocation and Reduction of the Uplink Feedback Information in OFDMA System (OFDMA 시스템에서 효율적인 자원할당과 상향링크 궤환 정보 축소를 위한 FBL (Flexible Block-wise Loading) 알고리즘)

  • Sun, Tae-Hyung;Ko, Sang-Jun;Chang, Kyung-Hi;Hwang, Sung-Hyun;Song, Myung-Sun;Kim, Chang-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.608-616
    • /
    • 2007
  • OFDM Systems for multi-user use adaptive modulation and ending (AMC) which is a method that selects suitable modulation order and code rate depending on channel state of each user. Using AMC, OFDM system can provide high quality and reliable communication. Base station using AMC scheme requires downlink channel information of each terminal to operate optimality. However, under practical system environment, it is unsuitable to transmit all channel information because uplink bandwidth of the system is limited. In this paper, we propose a flexible block-wise loading (FBL) algorithm combined with a novel CQI feedback scheme with reduced number of required bits to optimize the performance of AMC system. Proposed algorithm allocates sub-carrier groups dynamically to improve the sector throughput and outage probability performance.

Joint Uplink and Downlink Resource Allocation in Data and Energy Integrated Communication Networks

  • Yu, Qin;Lv, Kesi;Hu, Jie;Yang, Kun;Hong, Xuemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3012-3028
    • /
    • 2017
  • In this paper, we propose a joint power control strategy for both the uplink and downlink transmission by considering the energy requirements of the user equipments' uplink data transmissions in data and energy integrated communication networks (DEINs). In DEINs, the base station (BS) adopts the power splitting (PS) aided simultaneous wireless information and power transfer (SWIPT) technique in the downlink (DL) transmissions, while the user equipments (UEs) carry out their own uplink (UL) transmissions by exploiting the energy harvested during the BS's DL transmissions. In our DEIN model, there are M UEs served by the BS in order to fulfil both of their DL and UL transmissions. The orthogonal frequency division multiple access (OFDMA) technique is adopted for supporting the simultaneous transmissions of multiple UEs. Furthermore, a transmission frame is divided into N time slots in the medium access control (MAC) layer. The mathematical model is established for maximizing the sum-throughput of the UEs' DL transmissions and for ensuring their fairness during a single transmission frame T, respectively. In order to achieve these goals, in each transmission frame T, we optimally allocate the BS's power for each subcarrier and the PS factor for each UE during a specific time slot. The original optimisation problems are transformed into convex forms, which can be perfectly solved by convex optimisation theories. Our numerical results compare the optimal results by conceiving the objective of maximising the sum-throughput and those by conceiving the objective of maximising the fair-throughput. Furthermore, our numerical results also reveal the inherent tradeoff between the DL and the UL transmissions.

Mitigating Techniques for OFDMA System Based on SDD (SDD 기반 OFDMA 시스템을 위한 간섭 완화 기법)

  • Park, Chang-Hwan;Ko, Yo-Han;Kim, Moo-Chul;Park, Kyung-Won;Jeon, Won-Gi;Paik, Jong-Ho;Lee, Seok-Pil;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.742-749
    • /
    • 2009
  • In this paper, we propose mitigation techniques using time-domain shortening filter (TSF) and frequency-domain shortening filter (FSF) to overcome inter-block interference (IBn and inter-carrier interference (ICn due to the time difference of arrival (TDoA) and carrier frequency offset (CFO) between downlink and uplink signals from access point (AP) and subscriber station (SS) in synchronous digital duplexing (SDD)/orthogonal frequency division multiple access (OFDMA) systems for indoor wireless communication. The proposed TSF and FSF maximize SIR for shortening in time (SIRST) and SINR for shortening in frequency (SINRSF), respectively, by using channel impulse responses and timing information among stations, obtained from mutual ranging procedure. It is verified by computer simulation that the proposed TSF and FSF reduce effectively the effects of IBI and ICI in the SDD/OFDMA systems.

Novel allocation method of tiles in Subchannel for I/Q imbalances Estimation in WiBro uplink (WiBro 상량링크에서 I/Q 불균형 성분을 추정하기 위한 새로운 부채널 할당 방식)

  • Kim, Hye-Jin;Jin, Young-Hwan;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1146-1153
    • /
    • 2007
  • In this paper, we analyze the I/Q imbalances effects at the WiBro uplimk when using direct-conversion RF transceiver. If I/Q imbalance exists, the transmit signal is spread over two sbcarriers. As a result, phenomenon of performance reducing is produced. Contrary to OFDM system in which one user uses all subcarrier, symmetrical two subcarriers are assigned other users in OFDMA system. I/Q imbalances elements can't be estimated such a conventional allocation method of tiles in subchannel and compensated. In order to solve the problem, We propose a new method in order that symmetrical two subcarriers are assigned one user. If novel method is applied, we can estimate I/Q imbalances and compensate distortion received signal. As a result, we can obtain a performance similar performance when I/Q imbalances is not existed. Also, if proper detection methods are used, we get the effect of performance improvement, because of diversity gain what is happened due to combining I/Q imbalances with multi path fading channel.