• Title/Summary/Keyword: uplift water pressure

Search Result 28, Processing Time 0.024 seconds

Crack Analysis of Concrete Gravity Dam subjected to Uplift Pressure using Surface Integral Method (표면적분법을 이용한 양압력이 작용하는 중력식 콘코리트 댐의 균열해석)

  • 진치섭;이영호;엄장섭;김태완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.267-272
    • /
    • 2000
  • The modeling on uplift pressure on the foundation of a dam on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams. The evaluation of stress intensity factor at the crack tip of concrete gravity dam due to uplift pressure effect by surface integral method is performed in this study. The effects of body force, overtopping pressure and water pressure on the crack-face are also considered in this study.

  • PDF

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

A Study on the Type of Pavement Base and Drainage in Mountain Road for the Prevention of the Pavement Damage by Uplift Water Pressure (수치해석을 활용한 산지도로의 상향침투수압으로 인한 포장파손방지를 위한 포장기층종류 및 배수형태의 고찰)

  • Lim, Young-Kyu;Yune, Chan-Young;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Construction of road closed to mountains is inevitable in Korea because the mountainous region in Korea is more than 70% in area. Recently, due to global warming, typhoons or heavy rainfalls frequently occur, and accordingly, mountain roads are seriously damaged by landslides, debris flows, and uplift pressure below pavement. in this study, damage on pavement by uplift pressure was investigated. Various influencing factors such as slope angle, reinforcement of slope surface, thickness of soil cover underlain by rock, and types of drainage system were considered to evaluate uplift pressure acting on the bottom of pavement. Raising of water table up to the surface of slope may depend on the duration and intensity of rainfall. It shows that the installation of subdrain can reduce the uplift water pressure. Therefore, It is concluded that the use of subdrain system is effective to decrease uplift pressure and cement treated base is more endurable than typical crushed-stone base.

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.

Behavior of Buried Geo-structures due to Increase of Excess Pore Water Pressure Ratio During Earthquakes (지진발생시 과잉간극수압비의 증가에 따른 지중 매설구조물의 거동)

  • Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.27-37
    • /
    • 2011
  • Uplift phenomenon occurs when the apparent unit weight of buried geo-structures becomes smaller than that of the liquefied backfill due to the increase of an excess pore water pressure during strong earthquakes. In order to explain the relationship between the uplift displacement of the buried geo-structures and the increase of the excess pore water pressure ratio in backfill, dynamic centrifuge model tests are conducted. In the present study, primary and secondary factors against uplift behavior of the buried geo-structures are considered in the dynamic centrifuge model tests. Among these factors, the most important factors affecting the increase in the excess pore water pressure ratio were the ground water depth, the relative density of backfill, and the amplitude of the input acceleration, which were also largely affect the uplift amount of the buried geo-structures.

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

Guide plates on wind uplift of a solar collector model

  • Chung, K.M.;Chang, K.C.;Chen, C.K.;Chou, C.C.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2013
  • One of the key issues affecting the promotion of solar water heaters in Taiwan is the severe impact of typhoon each year. An experimental study was conducted to investigate the wind uplift characteristic of a solar collector model with and without a guide plate. The guide plate with different lengths and orientations with respect to wind direction was adopted. It is found that the wind uplift of a solar collector is associated with the tilt angle of the flat panel as expected. A cavity formed between the guide plate and the flat panel has a significant effect on the distributions of streamwsie and lateral pressure. Reduction in uplift is essentially coupled with the projected area of a guide plate on the lower surface of the tilt flat panel.

Evaluation of Uplift Force Acting on Foundation of Underground Structure (지하구조물 하부에 작용하는 양압력 평가)

  • Kim, Jin-Man;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.662-671
    • /
    • 2020
  • The uplift force acts directly on the foundation and causes a building to float to the upper ground. To examine the stability of a structure according to the uplift force, four sites (Paju, Anyang, Osan, and Gangneung) were selected, and sensors were installed on the foundations for the field tests. The rainfall characteristics were analyzed around June~September, and the changes in the water level of the adjacent river were considered. The maximum uplift force except for Gangneung did not exceed 72% of the water pressure when the groundwater level was up to the surface. On the other hand, the maximum uplift force in Osan was approximately 67%, but the reliability was slightly inferior because the difference from the average (46%) was large. The minimum uplift force was within 10% except for Anyang (~ 41%). At the Gangneung site on soft rock where the permanent drainage facility was installed before the measurement, the maximum and minimum uplift force was approximately 14% and 3.5%, respectively. Based on the measurement results, the possibility of overdesigning or underdesigning comes from the design by the hydrostatic pressure when the groundwater level is up to the surface.

On the Fracture Behaviour of the Concrete Gravity Dam Subjected to Water Pressure at the Crack Faces (균열면에 수압을 받는 중력식 콘크리트 댐의 파괴거동에 관한 연구)

  • 장희석
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.189-198
    • /
    • 1996
  • The fracture behaviour of concrete gravity dam mainly due to uplift pressure acting at the crack face was studied. Triangular type and parabolic type distribution of the uplift pressure including uniform type were first considered in case of calculating stress intensity factor(SIF) by the surface integral method. Second, the directions of crack propagation according to the uplift pressure distribution were pursued by FRANC(FRacture ANalysis Code). Third, critical crack lengths according to the uplift pressure distribution under the overflow depth were calculated. The SIF values obtained from the surface integral method were compared with those by FRANC and relatively good agrements could be obtained between both of them. And it could be seen that the direction of crack propagation in case of triangular pressure distribution was a little benter to the dam base than the one by the uniform type. Maximum critical crack lengths under the overflow depth were obtained at about 2/5-1/2 of the dam height.

  • PDF

Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study (지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구)

  • Jo, Seon-Ah;Jin, Gyu-Nam;Sim, Young-Jong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 2013
  • Urban underground structures at low ground elevations (i.e. shallow substructures) unlike typical tunnel structures are subjected to low overburden and high water pressures. This often causes the underground structures to become damaged. Various conventional methods for the urban underpass structures such as dead weight increasement, round anchors, and tension piles, are significantly conservative and provok concerns about the costly, time-consuming installation process. Recently, permanent drainage system becomes to widely use for supplementing the conventional method's shortcomings, but, it is applied without the considerations for ground conditions and water table. In this study, therefore, numerical analyses are performed with various parameters such as groundwater level, wall height, and ground conditions in order to establish design guidelines for induced drainage system which is a kind of the permanent drainage method constructed at the Y-area. According to the numerical results, the induced drainage system is very effective in reducing the uplift pressure that acts on the base of underpass structures.