• 제목/요약/키워드: uplift test

검색결과 119건 처리시간 0.028초

전차선 압상 검측을 위한 시스템 기술 (The Technology of Measurement System for Contact Wire Uplift)

  • 박영;조용현;김형철;권삼영;김인철;최원석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.900-904
    • /
    • 2009
  • The measurement of contact wire uplift in electric railway is one of the most test method to accept the maximum permitted speed of new vehicles or pantographs. The contact wire uplift can be measured for shot periods when pantograph is running in monitoring station. This paper describes the development of two different methods for contact uplift measurement using vision-based system and wireless online monitoring system. Our vision-based system employs a high-speed CMOS (Complementary Metal Oxide Semiconductor) camera with gigabit ethernet LAN. The development of a real-time remote monitoring system that acquires data from any kind of sensor to be transmitted by wireless communication from overhead line and structure at 25 kV to a computer in catenary system. The proposed two kind of different measurement systems to evaluation for dynamic uplift of overhead contact wire shows promising on-field applications for high speed train such as Korea Tilting Train (TTX) and Korea Train eXpress (KTX).

  • PDF

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • 한국지반환경공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

기초형식 및 지반조건에 따른 하우스파이프기초의 인발저항력 특성 (Characteristics of Uplift Capacity of House Pipe Foundation according to Foundation Types and Soil Conditions)

  • 송창섭;장웅희;최득호;김정철
    • 한국농공학회논문집
    • /
    • 제62권1호
    • /
    • pp.117-126
    • /
    • 2020
  • The area of facility horticulture in Korea is increasing rapidly, the single-span pipe house which uses galvanized steel pipe as the main rafters occupies 78.7% of the facility area. Lightweight structures such as the single-span pipe house are vulnerable to meteorological disasters such as strong winds, economic losses of the state, local governments and farmers are continuing as construction does not meet the design standards. In order to minimize economic losses in the horticultural specialty facilities sector, the Rural Development Administration has been operating the horticultural disaster resilient standard for horticultural specialty facilities since April 2007. The only standard for the pipe connector is the disaster resilient standard, there is no standard for the uplift capacity of the house pipe foundation and the research on it is also insufficient. The purpose of this study is to investigate the characteristics of uplift capacity according to the foundation type, compaction ratio and embedded depth through soil box test. The results of the maximum uplift capacity according to the type, compaction ratio and embedded depth can be used as the basic data for the basic design of the pipe house conforming to the disaster resilient standard. Due to the limitation of soil box test, it may be different from the behavior of pipe house installed on site. In the future, the field test and the actual pipe house should be made and supplemented by comparing this result with the field test values.

KTX 주행시 전차선 압상량 측정 결과 (Measured Data of the Contact Wire Uplift Amount at KTX running)

  • 권삼영;조용현;이기원;안영훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1372-1377
    • /
    • 2004
  • The contact wire uplift amount was measured for the conventional and the high speed catenary during KTX dynamic test period. The contact wire uplift amount is considered as a important parameter in determining and designing of the specific catenary. The measurements were conducted in wayside and onboard of KTX through the high speed camera and the current collection video monitoring system installed in KTX roof. This paper describes the measured results.

  • PDF

파이프 골조온실의 민말뚝 기초와 주름말뚝 기초의 인발저항력에 대한 실험적 연구 (A Study on the Uplift Capacity of Plane and Corrugated Pile Foundations for Pipe Frame Greenhouse)

  • 조재홍;윤용철;윤충섭;서원명
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.255-261
    • /
    • 1998
  • The recent greenhouses are extremely light-weight structures and easily damaged by the strong winds due to the lack of uplift capacity of pile foundations. The uplift capacity of pile foundations are subject to the shape of the pile surface, diameter, weight, and embedded depths. etc. So, it is very important to figure out the most appropriate conditions on shape of the pile surface and it's embedding depths. to improve wind proof capability of pipe greenhouses. In this study, plane and corrugated pile surfaces were examined on their uplift capacity with 30 to 50 cm of embedding depths. The diameters of tested piles were 10 cm, 15 cm, and 20 cm, respectively. Compaction ratio of the tested soil was 80%. Each test run was repeated three times for the respective treatment. Obtained results are as follows; In all cases, as the diameter and the embedding depth were increased, the ultimate uplift capacity of the pile was also increased. And it was clear that the ultimate uplift capacity of corrugated pile was approximately two times as big as that of plain piles under same conditions.

  • PDF

근입비와 인발속도가 콘크리트 항타말뚝의 인발부착계수에 미치는 영향 (Effect of Embedment Ratio and Loading Rate on Uplift Adhesion Factor of Concrete Driven Pile)

  • 김종인;박정준;신은철
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.367-371
    • /
    • 2005
  • Pile foundations are utilized when soil is so weak that shallow foundations are not suitable or point load is concentrated in small area. Such soil can be formed by the land reclamation works which have extensively been executed along the coastal line of southern and western parts of the Korean Peninsula. The working load at pile is sometimes subjected to not only compression load but also lateral load sad uplift forces. But in most of the practice design, uplift capacity of pile foundation is not considered and estimation of uplift capacity is presumed on the compression skin friction. This study was carried out to determine that the effect of embedment ratio and loading rate on uplift adhesion factor of concrete pile driven in clay. Based on the test results, the critical embedment ratio is about 9. Adhesion factor is constant under the critical embedment ratio, and decreasing over the critical embedment ratio. Also, adhesion factor is increased with the loading rate is increased.

점성토 지반에서의 다중 헬리컬 앵커의 인발 특성 (Pullout Characteristics of Multi Helical Anchors in Clay)

  • 이준대;이봉직;이종규
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.114-121
    • /
    • 1997
  • Helical anchors are foundation structure that designed to resist uplift loads are installed by applying in load to shaft while rotating it into the ground. These can be a cost effective means of proving tension anchorage for foundation where soil conditions permit their installation because of ease of installation. At present time, tapered helical anchors are commonly used to carry uplift loads. The uplift capacity includes the following factors : the height of overburden above the top helix, the resistant along a cylinder, the weight of the soil in the cylinder and suction force. In order to make clear behavior characteristics of helical anchors with pullout, model tests were conducted with respect to various embedment depth, space of helix, shape of helix. Based on the experimental study, the following conclusions are drawn. 1) The uplift capacity of multi helical anchors increase with embedment ratio of anchors The increase is smooth after critical uplift capacity. 2) Critical breakout factors and critical embedment ratio of multi helical anchor exist 7∼8, 4∼6 respectively. 3) Variation of uplift capacity with helix spaces show down after S/D=5. 4) Critical breakout factors of helical anchor in the laboratory test are similar to Das's theory.

  • PDF

온실용 얕은기초의 인발저항력 검토 (Uplift Capacity of Shallow Foundation for Greenhouse)

  • 윤성욱;최만권;이시영;강동현;문성동;유찬;윤용철
    • 생물환경조절학회지
    • /
    • 제24권3호
    • /
    • pp.187-195
    • /
    • 2015
  • 본 연구에서는 내재해형 플라스틱 온실과 유리온실의 기초에 대하여 인발저항력을 검토하기 위해 사질토 지반에서 실규모로 제작한 총 15개의 온실 기초를 이용하여 현장시험을 실시하였다. 그 결과, 대상 온실 기초의 최대인발저항력은 기초의 형태 및 규모가 서로 상이함에 따라 11.6 kN~82.4kN의 범위로 나타났다. 온실기초의 최대인발저항력 산정을 위해 제안된 이론식에 대하여 현장시험 결과를 이용하여 적용성을 검토한 결과 전반적으로 기존의 산정 이론식이 현장시험결과와 근접하는 수치를 제공하는 것으로 검토되었다. 다만, 본 연구에서 고려한 지반은 사질토 지반이며, 향후 점성토지반에 대하여 기존의 인발저항력 산정 이론식의 검증이 필요할 것으로 판단된다.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

사질토지반에서 그룹 마이크로파일의 설치조건에 따른 인발거동특성 (Uplift Behavior of Group Micropile according to Embedded Pile Condition in Sand)

  • 경두현;김가람;박대성;김대홍;이준환
    • 한국지반공학회논문집
    • /
    • 제31권2호
    • /
    • pp.27-37
    • /
    • 2015
  • 마이크로파일은 직경 300mm 이하의 소규모 말뚝기초형식으로, 기초구조물의 보강을 위해 널리 적용되고 있다. 본 연구에서는 일련의 인발재하시험을 통하여 그룹 마이크로파일의 설치조건에 대한 영향을 조사하였다. 본 연구를 위하여, 다양한 설치간격과 설치각도로 설치된 그룹 마이크로파일을 이용한 인발재하시험을 수행하였으며, 실험결과를 통해 인발지지력 증가특성과 인발변위 감소특성을 조사하였다. 인발저항력은 주로 마이크로파일의 설치각도에 영향을 받는 것으로 나타났으며, 인발저항력의 증가는 설치각도 15도, 30도, 45도에서 각각 33%, 59%, 5%가 증가되는 것으로 나타났다. 설치간격에 따른 인발변위의 감소량은 더 좁은 설치간격조건에서 크게 나타났으며, 동일한 설치간격조건에서의 설치각도에 따른 인발변위 저감율은 설치각도 15도, 30도, 45도에서 각각 50%, 53%, -45%가 되는 것으로 나타났다.