• Title/Summary/Keyword: unsymmetrical load

Search Result 24, Processing Time 0.022 seconds

Characteristic Behavior of In-plane Buckling of Circular Arch Ribs Subjected to Partial Distributed Loading (부분 등분포 하중을 받는 원형아치 리브의 면내 좌굴 거동특성)

  • Kim, Sung-Hoon;Moon, Ji-Ho;Yoon, Ki-Yong;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.57-65
    • /
    • 2005
  • When arch ribs are subjected unsymmetrical load, buckling strength Is lower than strength of arch ribs subjected symmetrical load. However, A few study about the buckling strength of arch ribs subjected unsymmetrical load is performed compare with study about arch ribs subjected symmetrical load. Several researchers(Deutch : 1940, Chang : 1973, Harrison : 1982) studied about arch ribs subjected unsymmetrical load and they found that unsymmetrical loading reduces the critical buckling load. But, their results are limited parabolic arch ribs. This paper focuses on circular arch ribs subjected to unsymmetrical loading. The result shows that the ratio of live and dead load length to cause smallest critical buckling load of arch ribs is $0.6{\sim}0.7$ under geometric nonlinear condition and $0.5{\sim}0.6$ under both material and geometrical nonlinear conditions.

Seismic performance of L-shaped RC walls sustaining Unsymmetrical bending

  • Zhang, Zhongwen;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.269-280
    • /
    • 2021
  • Reinforced concrete (RC) structural walls with L-shaped sections are commonly used in RC buildings. The walls are often expected to sustain biaxial load and Unsymmetrical bending in an earthquake event. However, there currently exists limited experimental evidence regarding their seismic behaviour in these lateral loading directions. This paper makes experimental and numerical investigations to these walls behaviours. Experimental evidences are presented for four L-shaped wall specimens which were tested under simulated seismic load from different lateral directions. The results highlighted some distinct behaviour of L-shaped walls sustaining Unsymmetrical bending relating to their seismic performance. First, due to the Unsymmetrical bending, out-of-plane reaction forces occur for these walls, which contribute to accumulation of the out-of-plane deformations of the wall, especially when out-of-plane stiffness of the section is reduced by horizontal cracks in the cyclic load. Secondly, cracking was found to affect shear centre of the specimens loaded in the Unsymmetrical bending direction. The shear centre of these specimens distinctly differs in the flange in the positive and negative loading direction. Cracking of the flange also causes significant warping in the bottom part of the wall, which eventually lead to out-of-plane buckling failure.

A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.617-633
    • /
    • 2016
  • In this paper, the analysis of hyperbolic cooling tower on elastic subsoil exposed to unsymmetrical wind loading is presented. Modified Vlasov foundation model is used to determine the soil parameters as a function of vertical deformation profile within subsoil. The iterative parameter updating procedure involves the use of Open Application Programming Interface (OAPI) feature of SAP2000 to provide two way data flow during execution. A computing tool coded in MATLAB employing OAPI is used to perform the analysis of hyperbolic cooling tower with supporting columns over a hollow annular raft founded on elastic subsoil. The analysis of such complex soil-structure system is investigated under self-weight and unsymmetrical wind load. The response of the cooling tower on elastic subsoil is compared with that of a tower that its supporting raft foundation is treated as fixed at the base. The results show that the effect of subsoil on the behavior of cooling tower is considerable at the top and bottom of the wall as well as supporting columns and raft foundation. The application of a full-size cooling tower has demonstrated that the procedure is simple, fast and can easily be implemented in practice.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Load-transfer mechanism in the ground with discontinuity planes during tunnel excavation (불연속면이 존재하는 지반에서 터널굴착에 의한 하중전이)

  • Lee, Sang-Duk;Byun, Gwang-Wook;Yoo, Kun-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • In this study, the influence of the presence of discontinuity planes on the load transfer mechanism and the pattern of loosening zone was studied based on the laboratory test. The trap-door and the reaction plates are installed as the bottom plane of the model box. The vertical discontinuity plane is installed in the dry sand. Various overburden heights and locations of discontinuity planes are applied as major factors in this study. The results show that at higher overburden heights over about 1.5 times the excavation width, the ratio of the transferred stress to the insitu stress converges to a certain value even if the overburden height increases further. The results also show that the discontinuity plane gives relatively larger influence on the load transfer mechanism, that produces the unsymmetrical load concentration, when the discontinuity plane locates within the tunnel width. When the discontinuity plane locates outside the tunnel width, the unsymmetrical load concentration is reduced considerably.

  • PDF

A Study on the Lateral Flow in Soft Soils subjected to Unsymmetrical Surcharges (편재하중을 받는 연약지반의 측방유동에 관한 연구)

  • 안종필
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.177-190
    • /
    • 1993
  • When soft soils are effected by unsymmetrical surcharge due to embankement and abutements of a bridge, large plastic sheraring deformations such as settlements, lateral displacements, upheavals and sliding shearing failure in the soils occurred and they have often damaged considerabily to the soils and structure. This study examines the existing theoretical background for the behavior of the displacement of soils by unsymmetrical surcharge on the soft soils and compares the analytical results to the actual measurements performed through the model test. The procedures of model test are that a model stock device is made and soft soils are filled in a container which fixes the soils. Then the displacements observed when surcharge load increa ses by regular interval at undrainage condition. It analyzes the relation of soil characteristics to displacement, critical surcharge and ultimate bearing capadty, condition of plastic flow and lateral flow pressure, comparing them with the existing theories. Understanding the causes of lateral displacement in soft soils due to unsymmetrical surchages will prevent a damage in advance.

  • PDF

A study on sound radiation from isotropic plates stiffened by unsymmetrical beams (비대칭 보에 의해 보강된 등방성 평판의 음향방상에 관한 연구)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, Jong-Tye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.753-761
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal unsymmetrical beams subjected to a sinusoidally time varying point load. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Using this theoretical model, the sound pressure levels on axis in a semi-infinited fluid (water) bounded by the plate were calculated using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numberial package. Especially, the variation in the sound pressure levels and their modes were investigated according to the change in frequency, bay spacing and bay distance.

A Evaluation of Standard Support Pattern for Two-Arch Road Tunnel (2-Arch 도로터널에 적용된 표준지보패턴의 적정성 검토)

  • Chun, Byungsik;Choi, Kwangbo;Kim, Hyeyang;Yoo, Junhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.25-35
    • /
    • 2008
  • In domestic cases, the standard support pattern of 2-lanes road tunnels is presented because construction experience and high degree various data was abundant. But, it is not desirable to apply standard for 2-Arch tunnels that the precedent and measuring data is insufficient existing support pattern blasting plan and interpretation of separate way concerning specific terrain and rock quality. In this study, behavior according to load distribution ratio and Unsymmetrical Pressure about standard support pattern which is applied in design and construction of 2-arch tunnels was analysed and the examination of blasting vibration has influence on the center wall is conducted as a consequence reasonableness of support whether or not with presumed support pressure and ground reaction curve method. In result appropriateness of standard support pattern, support quantity is proper but considers specific terrain and rock quality condition when design and construction of further step 2-arch tunnel standard support pattern must be decided by considering terrains, soil properties and construction condition of the objective tunnel.

  • PDF

Buckling and stability of elastic-plastic sandwich conical shells

  • Zielnica, Jerzy
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.157-169
    • /
    • 2012
  • Shell structures are very interesting from the design point of view and these are well recognized in the scientific literature. In this paper the analysis of the buckling loads and stability paths of a sandwich conical shell with unsymmetrical faces under combined load based on the assumptions of moderately large deflections (geometrically nonlinear theory) is considered and elastic-plastic properties of the material of the faces are taken into considerations. External load is assumed to be two-parametrical one and it is assumed that the shell deforms into the plastic range before buckling. Constitutive relations in the analysis are those of the Nadai-Hencky deformation theory of plasticity and Prandtl-Reuss plastic flow theory with the H-M-H (Huber-Mises-Hencky) yield condition. The governing stability equations are obtained by strain energy approach and Ritz method is used to solve the equations with the help of analytical-numerical methods using computer.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.