• Title/Summary/Keyword: unsupervised learning

Search Result 475, Processing Time 0.024 seconds

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection

  • Shin, Daegeun;Kim, Jae-Hwan
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.

ZPerformance Improvement of ART2 by Two-Stage Learning on Circularly Ordered Learning Sequence (순환 배열된 학습 데이터의 이 단계 학습에 의한 ART2 의 성능 향상)

  • 박영태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.102-108
    • /
    • 1996
  • Adaptive resonance theory (ART2) characterized by its built-in mechanism of handling the stability-plasticity switching and by the adaptive learning without forgetting informations learned in the past, is based on an unsupervised template matching. We propose an improved tow-stage learning algorithm for aRT2: the original unsupervised learning followed by a new supervised learning. Each of the output nodes, after the unsupervised learning, is labeled according to the category informations to reinforce the template pattern associated with the target output node belonging to the same category some dominant classes from exhausting a finite number of template patterns in ART2 inefficiently. Experimental results on a set of 2545 FLIR images show that the ART2 trained by the two-stage learning algorithm yields better accuracy than the original ART2, regardless of th esize of the network and the methods of evaluating the accuracy. This improvement shows the effectiveness of the two-stage learning process.

  • PDF

Understanding postal delivery areas in the Republic of Korea using multiple unsupervised learning approaches

  • Han, Keejun;Yu, Yeongwoong;Na, Dong-gil;Jung, Hoon;Heo, Younggyo;Jeong, Hyeoncheol;Yun, Sunguk;Kim, Jungeun
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.232-243
    • /
    • 2022
  • Changes in household composition and the residential environment have had a considerable impact on the features of postal delivery regions in recent years, resulting in a large increase in the overall workload of domestic postal delivery services. In this paper, we provide complex analysis results for postal delivery areas using various unsupervised learning approaches. First, we extract highly influential features using several feature-engineering methods. Then, using quantitative and qualitative cluster analyses, we find the distinctive traits and semantics of postal delivery zones. Unsupervised learning approaches are useful for successfully grouping postal service zones, according to our findings. Furthermore, by comparing a postal delivery region to other areas in the same group, workload balancing was achieved.

Proposal of a new method for learning of diesel generator sounds and detecting abnormal sounds using an unsupervised deep learning algorithm

  • Hweon-Ki Jo;Song-Hyun Kim;Chang-Lak Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.506-515
    • /
    • 2023
  • This study is to find a method to learn engine sound after the start-up of a diesel generator installed in nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and binary classification), it was investigated whether the diesel generator post-start sounds were learned as normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to the binary classification algorithm.

Deep Learning-Based Inverse Design for Engineering Systems: A Study on Supervised and Unsupervised Learning Models

  • Seong-Sin Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.127-135
    • /
    • 2024
  • Recent studies have shown that inverse design using deep learning has the potential to rapidly generate the optimal design that satisfies the target performance without the need for iterative optimization processes. Unlike traditional methods, deep learning allows the network to rapidly generate a large number of solution candidates for the same objective after a single training, and enables the generation of diverse designs tailored to the objectives of inverse design. These inverse design techniques are expected to significantly enhance the efficiency and innovation of design processes in various fields such as aerospace, biology, medical, and engineering. We analyzes inverse design models that are mainly utilized in the nano and chemical fields, and proposes inverse design models based on supervised and unsupervised learning that can be applied to the engineering system. It is expected to present the possibility of effectively applying inverse design methodologies to the design optimization problem in the field of engineering according to each specific objective.

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

A study about CS Unplugged using Unsupervised Learning (비지도 학습을 위한 언플러그드 활동에 대한 연구)

  • Jun, Bungwoo;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.175-179
    • /
    • 2021
  • Computer Science Unplugged activities are activities to learn about computer science through learning tools other than programming programs. Existing unplugged activities focus on the procedural thinking process and focus on guiding the thinking process through play. There is a lack of research on unsupervised learning, which plays an important role in machine learning, which has recently attracted attention. In this study, we designed and conducted an unplugged activities for unsupervised learning that analyzes data using video media familiar to elementary school students. The results on the effectiveness of the class were analyzed using the bebras challenge. As a result of analyzing the scores of the pre-test and post-test, it was confirmed that the students' computational thinking and problem-solving ability improved.

  • PDF

A Study on Handwritten Digit Categorization of RAM-based Neural Network (RAM 기반 신경망을 이용한 필기체 숫자 분류 연구)

  • Park, Sang-Moo;Kang, Man-Mo;Eom, Seong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • A RAM-based neural network is a weightless neural network based on binary neural network(BNN) which is efficient neural network with a one-shot learning. RAM-based neural network has multiful information bits and store counts of training in BNN. Supervised learning based on the RAM-based neural network has the excellent performance in pattern recognition but in pattern categorization with unsupervised learning as unsuitable. In this paper, we propose a unsupervised learning algorithm in the RAM-based neural network to perform pattern categorization. By the proposed unsupervised learning algorithm, RAM-based neural network create categories depending on the input pattern by itself. Therefore, RAM-based neural network for supervised learning and unsupervised learning should proof of all possible complex models. The training data for experiments provided by the MNIST offline handwritten digits which is consist of 0 to 9 multi-pattern.

A Korean Language Stemmer based on Unsupervised Learning (자율 학습에 의한 실질 형태소와 형식 형태소의 분리)

  • Jo, Se-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.675-684
    • /
    • 2001
  • This paper describes a method for stemming of Korean language by using unsupervised learning from raw corpus. This technique does not require a lexicon or any language-specific knowledge. Since we use unsupervised learning, the time and effort required for learning is negligible. Unlike heuristic approaches that are theoretically ungrounded, this method is based on widely accepted statistical methods, and therefore can be easily extended. The method is currently applied only to Korean language, but it can easily be adapted to other agglutinative languages, since it is not language-dependent.

  • PDF

Unsupervised Learning Model for Fault Prediction Using Representative Clustering Algorithms (대표적인 클러스터링 알고리즘을 사용한 비감독형 결함 예측 모델)

  • Hong, Euyseok;Park, Mikyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.57-64
    • /
    • 2014
  • Most previous studies of software fault prediction model which determines the fault-proneness of input modules have focused on supervised learning model using training data set. However, Unsupervised learning model is needed in case supervised learning model cannot be applied: either past training data set is not present or even though there exists data set, current project type is changed. Building an unsupervised learning model is extremely difficult that is why only a few studies exist. In this paper, we build unsupervised models using representative clustering algorithms, EM and DBSCAN, that have not been used in prior studies and compare these models with the previous model using K-means algorithm. The results of our study show that the EM model performs slightly better than the K-means model in terms of error rate and these two models significantly outperform the DBSCAN model.