Browse > Article
http://dx.doi.org/10.1007/s13143-018-0050-y

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection  

Shin, Daegeun (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
Kim, Jae-Hwan (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
Publication Information
Asia-Pacific Journal of Atmospheric Sciences / v.54, no.4, 2018 , pp. 527-544 More about this Journal
Abstract
This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.
Keywords
Sea fog detection; COMS; CALIPSO; Unsupervised learning; EM algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gultepe, I., Pearson, G.,Milbrandt, J.A., Hansen, B., Platnick, S., Taylor, P., Gordon, M., Oakley, J.P., Cober, S.G.: The fog remote sensing and modeling field project. Bull. Am. Meteorol. Soc. 90, 341-359 (2009)   DOI
2 Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C. 28, 100-108 (1979)
3 Heo, K.-Y., Kim, J.-H., Shim, J.-S., Ha, K.-J., Suh, A.-S., Oh, H.-M., Min, S.-Y.: A remote sensed data combined method for sea fog detection. Korean J. Remote Sens. 24, 1-16 (2008)
4 Hunt, G.E.: Radiative properties of terrestrial clouds at visible and infrared thermal window wavelengths. Quart. J. Roy. Metor. Soc. 99, 346-369 (1973)
5 Kawai, Y., Wada, A.: Diurnal Sea surface temperature variation and its impact on the atmosphere and ocean: a review. J. Oceanogr. 63, 721-744 (2007)   DOI
6 Kim, S.-W., Berthier, S., Raut, J.-C., Chazette, P., Dulac, F., Yoon, S.-C.: Validation of aerosol and cloud layer structures from the spaceborne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys. 8, 3705-3720 (2008)   DOI
7 Lee, T.F., Turk, F.J., Richardson, K.: Stratus and fog products using GOES-8-9 3.9-${\mu}m$ data. Weather Forecast. 12, 664-677 (1997)   DOI
8 Lee, J.-R., Chung, C.-Y., Oh, M.-R.: Fog detection using geostationary satellite data: temporally continuous algorithm. Asia-Pac. J. Atmos. Sci. 47, 113-122 (2011)   DOI
9 Li, J., Han, Z.-G., Chen, H.-B., Zhao, Z.-L., Wu, H.-Y.: Fog detection over China's Adjacent Sea area by using the MTSAT geostationary satellite data. Atmos. Oceanic Sci. Lett. 5(2), 128-133 (2012)   DOI
10 McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
11 Park, H., Kim, J.-H.: Detection of sea fog by combiningMTSAT infrared and AMSR microwave measurements around the Korean. Atmos. 22, 163-174 (2012)   DOI
12 National Institute of Meteorological Research: Development of Meteorological Data Processing System for Communication, Ocean and Meteorological Satellite, 11-1360395-000192-10, 492 pp. (2009)
13 Pankiewicz, G.S.: Pattern recognition techniques for the identification of cloud and cloud systems. Meteorol. Appl. 2, 257-271 (1995)
14 Papin, C., Bouthemy, P., Rochard, G.: Unsupervised segmentation of low clouds from infrared METEOSAT images based on a contextual spatio-temporal labeling approach. IEEE Trans. Geosci. Remote Sens. 40, 104-114 (2002)   DOI
15 Turk, F., Miller, S.: Toward improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens. 43, 1059-1069 (2005)   DOI
16 Ahn, M.-H., Sohn, E.-H., Hwang, B.-J.: A new algorithm for sea fog/stratus detection using GMS-5 IR data. Adv. Atmos. Sci. 20, 899-913 (2003)   DOI
17 Park, H.-S., Kim, Y.-H., Suh, A.-S., Lee, H.-H.: Detection of fog and the low stratus cloud at night using derived dual channel difference of NOAA/AVHRR data. Proc. 18th Asian conference on remote sensing, Kuala Lumpur, Malaysia (1997)
18 Saunders, R.W., Kriebel, K.T.: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 9, 123-150 (1988)   DOI
19 Schreiner, A.J., Ackerman, S.A., Baum, B.A., Heidinger, A.K.: Notes and correspondence; A multispectral technique for detecting lowlevel cloudiness near sunrise. J. Atmos. Ocean. Technol. 24, 1800-1810 (2007)   DOI
20 Stark, J.D., Donlon, C.J., Martin, M.J., McCulloch, M.E.: OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. In: Proc. OCEANS 2007-Europe, pp. 1-4. IEEE, Aberdeen (2007)
21 Cermak, J., Bendix, J.: A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 87, 279-292 (2008)   DOI
22 Bendix, J., Bachmann, M.: Operational detection of fog in the alpine region by means of advanced very high resolution radiometer (AVHRR) imagery of NOAA satellites. In: Proc. 5th AVHRR Data Users' Meeting, pp. 307-312. EUMETSAT, Trome (1991)
23 Bendix, J., Thies, B., Cermak, J.: Fog detection with TERRA-MODIS and MSG-SEVIRI. In: Proc. 2003 Met. Sat. Users' Conf, pp. 427-435. EUMETSAT, Weimar (2003)
24 Bendix, J., J. Cermak, Thies, B.: New perspectives in remote sensing of fog and low stratus-TERRA/AQUA-MODIS and MSG. Proc. 3rd Int. Conf. on Fog, Cape Town, South Africa, 11-15 (2004)
25 Calvert, C., Pavolonis, M.: GOES-R advanced baseline imager (ABI) algorithm theoretical basis document for low cloud and fog version 1.0. NOAA NESDIS STAR, 22-27 (2010)
26 Cermak, J., Bendix, J.: Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data: a feasibility study. Pure Appl. Geophys. 164, 1179-1192 (2007)   DOI
27 Cermak, J., Bendix, J.: Detecting ground fog from space - a microphysicsbased approach. Int. J. Remote Sens. 32, 3345-3371 (2011)   DOI
28 Cermak, J., Thies, B., Bendix, J.: A new approach to fog detection using SEVIRI and MODIS data. In: Proc. 2004 Met. Sat. Users' Conf. EUMETSAT, Prague (2004)
29 Cha, Y.-M., Lee, H.-W., Lee, S.-H.: Impacts of the high-Resolution Sea surface temperature distribution on modeled snowfall formation over the Yellow Sea during a cold-air outbreak. Weather Forecast. 26, 487-503 (2011)   DOI
30 Cho, Y.-K., Kim, M.-O., Kim, B.-C.: Sea fog around the Korean peninsula. J. Appl. Meteorol. 39, 2473-2479 (2000)   DOI
31 Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B. 39, 1-38 (1977)
32 Whiffen, B.: Fog: impact on aviation and goals for meteorological prediction. In: Proc. 2nd Conf. on Fog and Fog Collection, pp. 525-528. Environment Canada and WMO, St. John's (2001)
33 Wu, D., Lu, B., Zhang, T., Yan, F.: A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection. J. Quant. Spectrosc. Radiat. Transf. 153, 88-94 (2015)   DOI
34 Xie, J., Zhu, J., Li, Y.: Assessment and inter-comparison of five highresolution sea surface temperature products in the shelf and coastal seas around China. Cont. Shelf Res. 28, 1286-1293 (2008)   DOI
35 Zhang, S., Yi, L.: A comprehensive dynamic threshold algorithm for Daytime Sea fog retrieval over the Chinese adjacent seas. Pure Appl. Geophys. 170, 1931-1944 (2013)   DOI
36 Zhang, Z., Chen, C., Sun, J., Chan, K.L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recogn. 36, 1973-1983 (2003)   DOI
37 d'Entremont, R.P.: Low-and midlevel cloud analysis using nighttime multispectral imagery. J. Appl.Meteorol. Climatol. 25, 1853-1869 (1986)   DOI
38 d'Entremont, R.P., Thomason, L.W.: Interpreting meteorological satellite images using a color-composite technique. Bull.Am. Meteorol. Soc. 68, 762-768 (1987)   DOI
39 Ellrod, G.P.: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Weather Forecast. 10, 606-619 (1995)   DOI
40 Ellrod, G.P., Gultepe, I.: Inferring low Cloud Base heights at night for aviation using satellite infrared and surface temperature data. Pure Appl. Geophys. 164, 1193-1205 (2007)   DOI
41 Eyre, J.R., Brownscombe, J.L., Allam, R.J.: Detection of fog at night using advanced very high resolution radiometer (AVHRR) imagery. Meteorol. Mag. 113, 266-271 (1984)
42 Gao, S., Wu, W., Zhu, L., Fu, G., Huang, B.: Detection of nighttime sea fog/stratus over the Huang-Hai Sea using MTSAT-1R IR data. Acta Oceanol. Sin. 28, 23-35 (2009)
43 Gentemann, C.L., Donlon, C.J., Stuart-Menteth, A., Wentz, F.J.: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett. 30, 1140 (2003)   DOI
44 Gultepe, I., Tardif, R., Michaelides, S.C., Cermak, J., Bott, A., Bendix, J., Muller, M.D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs,W., Toth, G., Cober, S.G.: Fog research: a review of past achievements and future perspectives. Pure Appl. Geophys. 164, 1121-1159 (2007)   DOI