DOI QR코드

DOI QR Code

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection

  • Shin, Daegeun (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Kim, Jae-Hwan (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
  • Received : 2016.08.24
  • Accepted : 2017.12.18
  • Published : 2018.11.30

Abstract

This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.

Keywords

Acknowledgement

Grant : Development of Atmosphere/aviation Algorithms, Development of Geostationary Meteorological Satellite Ground Segment

Supported by : ETRI (Electronics and Telecommunications Research Institute), NMSC (National Meteorological Satellite Center)

References

  1. Ahn, M.-H., Sohn, E.-H., Hwang, B.-J.: A new algorithm for sea fog/stratus detection using GMS-5 IR data. Adv. Atmos. Sci. 20, 899-913 (2003) https://doi.org/10.1007/BF02915513
  2. Bendix, J., Bachmann, M.: Operational detection of fog in the alpine region by means of advanced very high resolution radiometer (AVHRR) imagery of NOAA satellites. In: Proc. 5th AVHRR Data Users' Meeting, pp. 307-312. EUMETSAT, Trome (1991)
  3. Bendix, J., Thies, B., Cermak, J.: Fog detection with TERRA-MODIS and MSG-SEVIRI. In: Proc. 2003 Met. Sat. Users' Conf, pp. 427-435. EUMETSAT, Weimar (2003)
  4. Bendix, J., J. Cermak, Thies, B.: New perspectives in remote sensing of fog and low stratus-TERRA/AQUA-MODIS and MSG. Proc. 3rd Int. Conf. on Fog, Cape Town, South Africa, 11-15 (2004)
  5. Calvert, C., Pavolonis, M.: GOES-R advanced baseline imager (ABI) algorithm theoretical basis document for low cloud and fog version 1.0. NOAA NESDIS STAR, 22-27 (2010)
  6. Cermak, J., Bendix, J.: Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data: a feasibility study. Pure Appl. Geophys. 164, 1179-1192 (2007) https://doi.org/10.1007/s00024-007-0213-8
  7. Cermak, J., Bendix, J.: A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 87, 279-292 (2008) https://doi.org/10.1016/j.atmosres.2007.11.009
  8. Cermak, J., Bendix, J.: Detecting ground fog from space - a microphysicsbased approach. Int. J. Remote Sens. 32, 3345-3371 (2011) https://doi.org/10.1080/01431161003747505
  9. Cermak, J., Thies, B., Bendix, J.: A new approach to fog detection using SEVIRI and MODIS data. In: Proc. 2004 Met. Sat. Users' Conf. EUMETSAT, Prague (2004)
  10. Cha, Y.-M., Lee, H.-W., Lee, S.-H.: Impacts of the high-Resolution Sea surface temperature distribution on modeled snowfall formation over the Yellow Sea during a cold-air outbreak. Weather Forecast. 26, 487-503 (2011) https://doi.org/10.1175/WAF-D-10-05019.1
  11. Cho, Y.-K., Kim, M.-O., Kim, B.-C.: Sea fog around the Korean peninsula. J. Appl. Meteorol. 39, 2473-2479 (2000) https://doi.org/10.1175/1520-0450(2000)039<2473:SFATKP>2.0.CO;2
  12. d'Entremont, R.P.: Low-and midlevel cloud analysis using nighttime multispectral imagery. J. Appl.Meteorol. Climatol. 25, 1853-1869 (1986) https://doi.org/10.1175/1520-0450(1986)025<1853:LAMCAU>2.0.CO;2
  13. d'Entremont, R.P., Thomason, L.W.: Interpreting meteorological satellite images using a color-composite technique. Bull.Am. Meteorol. Soc. 68, 762-768 (1987) https://doi.org/10.1175/1520-0477(1987)068<0762:IMSIUA>2.0.CO;2
  14. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B. 39, 1-38 (1977)
  15. Ellrod, G.P.: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Weather Forecast. 10, 606-619 (1995) https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
  16. Ellrod, G.P., Gultepe, I.: Inferring low Cloud Base heights at night for aviation using satellite infrared and surface temperature data. Pure Appl. Geophys. 164, 1193-1205 (2007) https://doi.org/10.1007/s00024-007-0214-7
  17. Eyre, J.R., Brownscombe, J.L., Allam, R.J.: Detection of fog at night using advanced very high resolution radiometer (AVHRR) imagery. Meteorol. Mag. 113, 266-271 (1984)
  18. Gao, S., Wu, W., Zhu, L., Fu, G., Huang, B.: Detection of nighttime sea fog/stratus over the Huang-Hai Sea using MTSAT-1R IR data. Acta Oceanol. Sin. 28, 23-35 (2009)
  19. Gentemann, C.L., Donlon, C.J., Stuart-Menteth, A., Wentz, F.J.: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett. 30, 1140 (2003) https://doi.org/10.1029/2002GL016291
  20. Gultepe, I., Tardif, R., Michaelides, S.C., Cermak, J., Bott, A., Bendix, J., Muller, M.D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs,W., Toth, G., Cober, S.G.: Fog research: a review of past achievements and future perspectives. Pure Appl. Geophys. 164, 1121-1159 (2007) https://doi.org/10.1007/s00024-007-0211-x
  21. Gultepe, I., Pearson, G.,Milbrandt, J.A., Hansen, B., Platnick, S., Taylor, P., Gordon, M., Oakley, J.P., Cober, S.G.: The fog remote sensing and modeling field project. Bull. Am. Meteorol. Soc. 90, 341-359 (2009) https://doi.org/10.1175/2008BAMS2354.1
  22. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C. 28, 100-108 (1979)
  23. Heo, K.-Y., Kim, J.-H., Shim, J.-S., Ha, K.-J., Suh, A.-S., Oh, H.-M., Min, S.-Y.: A remote sensed data combined method for sea fog detection. Korean J. Remote Sens. 24, 1-16 (2008)
  24. Hunt, G.E.: Radiative properties of terrestrial clouds at visible and infrared thermal window wavelengths. Quart. J. Roy. Metor. Soc. 99, 346-369 (1973)
  25. Kawai, Y., Wada, A.: Diurnal Sea surface temperature variation and its impact on the atmosphere and ocean: a review. J. Oceanogr. 63, 721-744 (2007) https://doi.org/10.1007/s10872-007-0063-0
  26. Kim, S.-W., Berthier, S., Raut, J.-C., Chazette, P., Dulac, F., Yoon, S.-C.: Validation of aerosol and cloud layer structures from the spaceborne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys. 8, 3705-3720 (2008) https://doi.org/10.5194/acp-8-3705-2008
  27. Lee, T.F., Turk, F.J., Richardson, K.: Stratus and fog products using GOES-8-9 3.9-${\mu}m$ data. Weather Forecast. 12, 664-677 (1997) https://doi.org/10.1175/1520-0434(1997)012<0664:SAFPUG>2.0.CO;2
  28. Lee, J.-R., Chung, C.-Y., Oh, M.-R.: Fog detection using geostationary satellite data: temporally continuous algorithm. Asia-Pac. J. Atmos. Sci. 47, 113-122 (2011) https://doi.org/10.1007/s13143-011-0002-2
  29. Li, J., Han, Z.-G., Chen, H.-B., Zhao, Z.-L., Wu, H.-Y.: Fog detection over China's Adjacent Sea area by using the MTSAT geostationary satellite data. Atmos. Oceanic Sci. Lett. 5(2), 128-133 (2012) https://doi.org/10.1080/16742834.2012.11446978
  30. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
  31. National Institute of Meteorological Research: Development of Meteorological Data Processing System for Communication, Ocean and Meteorological Satellite, 11-1360395-000192-10, 492 pp. (2009)
  32. Pankiewicz, G.S.: Pattern recognition techniques for the identification of cloud and cloud systems. Meteorol. Appl. 2, 257-271 (1995)
  33. Papin, C., Bouthemy, P., Rochard, G.: Unsupervised segmentation of low clouds from infrared METEOSAT images based on a contextual spatio-temporal labeling approach. IEEE Trans. Geosci. Remote Sens. 40, 104-114 (2002) https://doi.org/10.1109/36.981353
  34. Park, H., Kim, J.-H.: Detection of sea fog by combiningMTSAT infrared and AMSR microwave measurements around the Korean. Atmos. 22, 163-174 (2012) https://doi.org/10.14191/Atmos.2012.22.2.163
  35. Park, H.-S., Kim, Y.-H., Suh, A.-S., Lee, H.-H.: Detection of fog and the low stratus cloud at night using derived dual channel difference of NOAA/AVHRR data. Proc. 18th Asian conference on remote sensing, Kuala Lumpur, Malaysia (1997)
  36. Saunders, R.W., Kriebel, K.T.: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 9, 123-150 (1988) https://doi.org/10.1080/01431168808954841
  37. Schreiner, A.J., Ackerman, S.A., Baum, B.A., Heidinger, A.K.: Notes and correspondence; A multispectral technique for detecting lowlevel cloudiness near sunrise. J. Atmos. Ocean. Technol. 24, 1800-1810 (2007) https://doi.org/10.1175/JTECH2092.1
  38. Stark, J.D., Donlon, C.J., Martin, M.J., McCulloch, M.E.: OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. In: Proc. OCEANS 2007-Europe, pp. 1-4. IEEE, Aberdeen (2007)
  39. Turk, F., Miller, S.: Toward improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens. 43, 1059-1069 (2005) https://doi.org/10.1109/TGRS.2004.841627
  40. Whiffen, B.: Fog: impact on aviation and goals for meteorological prediction. In: Proc. 2nd Conf. on Fog and Fog Collection, pp. 525-528. Environment Canada and WMO, St. John's (2001)
  41. Wu, D., Lu, B., Zhang, T., Yan, F.: A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection. J. Quant. Spectrosc. Radiat. Transf. 153, 88-94 (2015) https://doi.org/10.1016/j.jqsrt.2014.09.021
  42. Xie, J., Zhu, J., Li, Y.: Assessment and inter-comparison of five highresolution sea surface temperature products in the shelf and coastal seas around China. Cont. Shelf Res. 28, 1286-1293 (2008) https://doi.org/10.1016/j.csr.2008.02.020
  43. Zhang, S., Yi, L.: A comprehensive dynamic threshold algorithm for Daytime Sea fog retrieval over the Chinese adjacent seas. Pure Appl. Geophys. 170, 1931-1944 (2013) https://doi.org/10.1007/s00024-013-0641-6
  44. Zhang, Z., Chen, C., Sun, J., Chan, K.L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recogn. 36, 1973-1983 (2003) https://doi.org/10.1016/S0031-3203(03)00059-1

Cited by

  1. Synergies in Operational Oceanography: The Intrinsic Need for Sustained Ocean Observations vol.6, pp.None, 2019, https://doi.org/10.3389/fmars.2019.00450
  2. Probability Index of Low Stratus and Fog at Dawn using Dual Geostationary Satellite Observations from COMS and FY-2D near the Korean Peninsula vol.11, pp.11, 2018, https://doi.org/10.3390/rs11111283
  3. Development of Fog Detection Algorithm Using GK2A/AMI and Ground Data vol.12, pp.19, 2020, https://doi.org/10.3390/rs12193181
  4. Advanced Dual-Satellite Method for Detection of Low Stratus and Fog near Japan at Dawn from FY-4A and Himawari-8 vol.13, pp.5, 2021, https://doi.org/10.3390/rs13051042
  5. Interannual Variability in Summertime Sea Fog Over the Northern Yellow Sea and Its Association With the Local Sea Surface Temperature vol.126, pp.15, 2018, https://doi.org/10.1029/2020jd034439
  6. Fog Season Risk Assessment for Maritime Transportation Systems Exploiting Himawari-8 Data: A Case Study in Bohai Sea, China vol.13, pp.17, 2018, https://doi.org/10.3390/rs13173530
  7. A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection vol.13, pp.24, 2021, https://doi.org/10.3390/rs13245163