Acknowledgement
Grant : Development of Atmosphere/aviation Algorithms, Development of Geostationary Meteorological Satellite Ground Segment
Supported by : ETRI (Electronics and Telecommunications Research Institute), NMSC (National Meteorological Satellite Center)
References
- Ahn, M.-H., Sohn, E.-H., Hwang, B.-J.: A new algorithm for sea fog/stratus detection using GMS-5 IR data. Adv. Atmos. Sci. 20, 899-913 (2003) https://doi.org/10.1007/BF02915513
- Bendix, J., Bachmann, M.: Operational detection of fog in the alpine region by means of advanced very high resolution radiometer (AVHRR) imagery of NOAA satellites. In: Proc. 5th AVHRR Data Users' Meeting, pp. 307-312. EUMETSAT, Trome (1991)
- Bendix, J., Thies, B., Cermak, J.: Fog detection with TERRA-MODIS and MSG-SEVIRI. In: Proc. 2003 Met. Sat. Users' Conf, pp. 427-435. EUMETSAT, Weimar (2003)
- Bendix, J., J. Cermak, Thies, B.: New perspectives in remote sensing of fog and low stratus-TERRA/AQUA-MODIS and MSG. Proc. 3rd Int. Conf. on Fog, Cape Town, South Africa, 11-15 (2004)
- Calvert, C., Pavolonis, M.: GOES-R advanced baseline imager (ABI) algorithm theoretical basis document for low cloud and fog version 1.0. NOAA NESDIS STAR, 22-27 (2010)
- Cermak, J., Bendix, J.: Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data: a feasibility study. Pure Appl. Geophys. 164, 1179-1192 (2007) https://doi.org/10.1007/s00024-007-0213-8
- Cermak, J., Bendix, J.: A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 87, 279-292 (2008) https://doi.org/10.1016/j.atmosres.2007.11.009
- Cermak, J., Bendix, J.: Detecting ground fog from space - a microphysicsbased approach. Int. J. Remote Sens. 32, 3345-3371 (2011) https://doi.org/10.1080/01431161003747505
- Cermak, J., Thies, B., Bendix, J.: A new approach to fog detection using SEVIRI and MODIS data. In: Proc. 2004 Met. Sat. Users' Conf. EUMETSAT, Prague (2004)
- Cha, Y.-M., Lee, H.-W., Lee, S.-H.: Impacts of the high-Resolution Sea surface temperature distribution on modeled snowfall formation over the Yellow Sea during a cold-air outbreak. Weather Forecast. 26, 487-503 (2011) https://doi.org/10.1175/WAF-D-10-05019.1
- Cho, Y.-K., Kim, M.-O., Kim, B.-C.: Sea fog around the Korean peninsula. J. Appl. Meteorol. 39, 2473-2479 (2000) https://doi.org/10.1175/1520-0450(2000)039<2473:SFATKP>2.0.CO;2
- d'Entremont, R.P.: Low-and midlevel cloud analysis using nighttime multispectral imagery. J. Appl.Meteorol. Climatol. 25, 1853-1869 (1986) https://doi.org/10.1175/1520-0450(1986)025<1853:LAMCAU>2.0.CO;2
- d'Entremont, R.P., Thomason, L.W.: Interpreting meteorological satellite images using a color-composite technique. Bull.Am. Meteorol. Soc. 68, 762-768 (1987) https://doi.org/10.1175/1520-0477(1987)068<0762:IMSIUA>2.0.CO;2
- Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B. 39, 1-38 (1977)
- Ellrod, G.P.: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Weather Forecast. 10, 606-619 (1995) https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
- Ellrod, G.P., Gultepe, I.: Inferring low Cloud Base heights at night for aviation using satellite infrared and surface temperature data. Pure Appl. Geophys. 164, 1193-1205 (2007) https://doi.org/10.1007/s00024-007-0214-7
- Eyre, J.R., Brownscombe, J.L., Allam, R.J.: Detection of fog at night using advanced very high resolution radiometer (AVHRR) imagery. Meteorol. Mag. 113, 266-271 (1984)
- Gao, S., Wu, W., Zhu, L., Fu, G., Huang, B.: Detection of nighttime sea fog/stratus over the Huang-Hai Sea using MTSAT-1R IR data. Acta Oceanol. Sin. 28, 23-35 (2009)
- Gentemann, C.L., Donlon, C.J., Stuart-Menteth, A., Wentz, F.J.: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett. 30, 1140 (2003) https://doi.org/10.1029/2002GL016291
- Gultepe, I., Tardif, R., Michaelides, S.C., Cermak, J., Bott, A., Bendix, J., Muller, M.D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs,W., Toth, G., Cober, S.G.: Fog research: a review of past achievements and future perspectives. Pure Appl. Geophys. 164, 1121-1159 (2007) https://doi.org/10.1007/s00024-007-0211-x
- Gultepe, I., Pearson, G.,Milbrandt, J.A., Hansen, B., Platnick, S., Taylor, P., Gordon, M., Oakley, J.P., Cober, S.G.: The fog remote sensing and modeling field project. Bull. Am. Meteorol. Soc. 90, 341-359 (2009) https://doi.org/10.1175/2008BAMS2354.1
- Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C. 28, 100-108 (1979)
- Heo, K.-Y., Kim, J.-H., Shim, J.-S., Ha, K.-J., Suh, A.-S., Oh, H.-M., Min, S.-Y.: A remote sensed data combined method for sea fog detection. Korean J. Remote Sens. 24, 1-16 (2008)
- Hunt, G.E.: Radiative properties of terrestrial clouds at visible and infrared thermal window wavelengths. Quart. J. Roy. Metor. Soc. 99, 346-369 (1973)
- Kawai, Y., Wada, A.: Diurnal Sea surface temperature variation and its impact on the atmosphere and ocean: a review. J. Oceanogr. 63, 721-744 (2007) https://doi.org/10.1007/s10872-007-0063-0
- Kim, S.-W., Berthier, S., Raut, J.-C., Chazette, P., Dulac, F., Yoon, S.-C.: Validation of aerosol and cloud layer structures from the spaceborne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys. 8, 3705-3720 (2008) https://doi.org/10.5194/acp-8-3705-2008
-
Lee, T.F., Turk, F.J., Richardson, K.: Stratus and fog products using GOES-8-9 3.9-
${\mu}m$ data. Weather Forecast. 12, 664-677 (1997) https://doi.org/10.1175/1520-0434(1997)012<0664:SAFPUG>2.0.CO;2 - Lee, J.-R., Chung, C.-Y., Oh, M.-R.: Fog detection using geostationary satellite data: temporally continuous algorithm. Asia-Pac. J. Atmos. Sci. 47, 113-122 (2011) https://doi.org/10.1007/s13143-011-0002-2
- Li, J., Han, Z.-G., Chen, H.-B., Zhao, Z.-L., Wu, H.-Y.: Fog detection over China's Adjacent Sea area by using the MTSAT geostationary satellite data. Atmos. Oceanic Sci. Lett. 5(2), 128-133 (2012) https://doi.org/10.1080/16742834.2012.11446978
- McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
- National Institute of Meteorological Research: Development of Meteorological Data Processing System for Communication, Ocean and Meteorological Satellite, 11-1360395-000192-10, 492 pp. (2009)
- Pankiewicz, G.S.: Pattern recognition techniques for the identification of cloud and cloud systems. Meteorol. Appl. 2, 257-271 (1995)
- Papin, C., Bouthemy, P., Rochard, G.: Unsupervised segmentation of low clouds from infrared METEOSAT images based on a contextual spatio-temporal labeling approach. IEEE Trans. Geosci. Remote Sens. 40, 104-114 (2002) https://doi.org/10.1109/36.981353
- Park, H., Kim, J.-H.: Detection of sea fog by combiningMTSAT infrared and AMSR microwave measurements around the Korean. Atmos. 22, 163-174 (2012) https://doi.org/10.14191/Atmos.2012.22.2.163
- Park, H.-S., Kim, Y.-H., Suh, A.-S., Lee, H.-H.: Detection of fog and the low stratus cloud at night using derived dual channel difference of NOAA/AVHRR data. Proc. 18th Asian conference on remote sensing, Kuala Lumpur, Malaysia (1997)
- Saunders, R.W., Kriebel, K.T.: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 9, 123-150 (1988) https://doi.org/10.1080/01431168808954841
- Schreiner, A.J., Ackerman, S.A., Baum, B.A., Heidinger, A.K.: Notes and correspondence; A multispectral technique for detecting lowlevel cloudiness near sunrise. J. Atmos. Ocean. Technol. 24, 1800-1810 (2007) https://doi.org/10.1175/JTECH2092.1
- Stark, J.D., Donlon, C.J., Martin, M.J., McCulloch, M.E.: OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. In: Proc. OCEANS 2007-Europe, pp. 1-4. IEEE, Aberdeen (2007)
- Turk, F., Miller, S.: Toward improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens. 43, 1059-1069 (2005) https://doi.org/10.1109/TGRS.2004.841627
- Whiffen, B.: Fog: impact on aviation and goals for meteorological prediction. In: Proc. 2nd Conf. on Fog and Fog Collection, pp. 525-528. Environment Canada and WMO, St. John's (2001)
- Wu, D., Lu, B., Zhang, T., Yan, F.: A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection. J. Quant. Spectrosc. Radiat. Transf. 153, 88-94 (2015) https://doi.org/10.1016/j.jqsrt.2014.09.021
- Xie, J., Zhu, J., Li, Y.: Assessment and inter-comparison of five highresolution sea surface temperature products in the shelf and coastal seas around China. Cont. Shelf Res. 28, 1286-1293 (2008) https://doi.org/10.1016/j.csr.2008.02.020
- Zhang, S., Yi, L.: A comprehensive dynamic threshold algorithm for Daytime Sea fog retrieval over the Chinese adjacent seas. Pure Appl. Geophys. 170, 1931-1944 (2013) https://doi.org/10.1007/s00024-013-0641-6
- Zhang, Z., Chen, C., Sun, J., Chan, K.L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recogn. 36, 1973-1983 (2003) https://doi.org/10.1016/S0031-3203(03)00059-1
Cited by
- Synergies in Operational Oceanography: The Intrinsic Need for Sustained Ocean Observations vol.6, pp.None, 2019, https://doi.org/10.3389/fmars.2019.00450
- Probability Index of Low Stratus and Fog at Dawn using Dual Geostationary Satellite Observations from COMS and FY-2D near the Korean Peninsula vol.11, pp.11, 2018, https://doi.org/10.3390/rs11111283
- Development of Fog Detection Algorithm Using GK2A/AMI and Ground Data vol.12, pp.19, 2020, https://doi.org/10.3390/rs12193181
- Advanced Dual-Satellite Method for Detection of Low Stratus and Fog near Japan at Dawn from FY-4A and Himawari-8 vol.13, pp.5, 2021, https://doi.org/10.3390/rs13051042
- Interannual Variability in Summertime Sea Fog Over the Northern Yellow Sea and Its Association With the Local Sea Surface Temperature vol.126, pp.15, 2018, https://doi.org/10.1029/2020jd034439
- Fog Season Risk Assessment for Maritime Transportation Systems Exploiting Himawari-8 Data: A Case Study in Bohai Sea, China vol.13, pp.17, 2018, https://doi.org/10.3390/rs13173530
- A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection vol.13, pp.24, 2021, https://doi.org/10.3390/rs13245163