• 제목/요약/키워드: unsupervised deep learning

검색결과 101건 처리시간 0.026초

ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구 (A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection)

  • 박성환;김민석;백은서;박정훈
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.36-47
    • /
    • 2023
  • 주요 산업현장에서 설비를 제어하는 산업제어시스템(ICS, Industrial Control System)이 네트워크로 다른 시스템과 연결되는 사례가 증가하고 있다. 또한, 이러한 통합과 함께 한 번의 외부 침입이 전체 시스템 마비로 이루어질 수 있는 지능화된 공격의 발달로, 산업제어시스템에 대한 보안에 대한 위험성과 파급력이 증가하고 있어, 사이버 공격에 대한 보호 및 탐지 방안의 연구가 활발하게 진행되고 있으며, 비지도학습 형태의 딥러닝 모델이 많은 성과를 보여 딥러닝을 기반으로 한 이상(Anomaly) 탐지 기술이 많이 도입되고 있다. 어어, 본 연구에서는 딥러닝 모델에 전처리 방법론을 적용하여 시계열 데이터의 이상 탐지성능을 향상시키는 것에 중점을 두어, 그 결과 웨이블릿 변환(WT, Wavelet Transform) 기반 노이즈 제거 방법론이 딥러닝 기반 이상 탐지의 전처리 방법론으로 효과적임을 알 수 있었으며, 특히 센서에 대한 군집화(Clustering)를 통해 센서의 특성을 반영하여 Dual-Tree Complex 웨이블릿 변환을 차등적으로 적용하였을 때 사이버 공격의 탐지성능을 높이는 것에 가장 효과적임을 확인하였다.

가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템 (Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function)

  • 김동현;임형철;이성수
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.6-13
    • /
    • 2024
  • 본 논문에서는 비지도학습 모델인 오토인코더와 가우시안 커널 밀도 추정 함수를 이용하여 차량용 CAN 네트워크에서 비정상적인 데이터를 탐지하는 방안을 제안한다. 제안하는 오토인코더 모델은 정상 데이터에서 CAN 프레임의 ID만으로 학습시킨다. 이후 가우시안 커널 밀도 추정 함수를 이용하여 구한 최적의 프레임 개수와 손실 임계값을 가지는 모델을 사용하여 비정상 데이터를 효과적으로 탐지한다. DoS 공격, Gear 스푸핑 공격, RPM 스푸핑 공격, Fuzzy 공격 등 4가지 공격 데이터로 오토인코더 기반 IDS를 검증하였으며 성능을 평가하였다. 기존 비지도학습 기반 모델들과 비교했을 때 우수한 성능을 나타냈으며 모든 평가 지표에서 99% 이상의 성능을 나타냈다.

Performance Evaluation of Pilotless Channel Estimation with Limited Number of Data Symbols in Frequency Selective Channel

  • Wang, Hanho
    • International Journal of Contents
    • /
    • 제14권2호
    • /
    • pp.1-6
    • /
    • 2018
  • In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).

Machine Learning Techniques for Speech Recognition using the Magnitude

  • Krishnan, C. Gopala;Robinson, Y. Harold;Chilamkurti, Naveen
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2020
  • Machine learning consists of supervised and unsupervised learning among which supervised learning is used for the speech recognition objectives. Supervised learning is the Data mining task of inferring a function from labeled training data. Speech recognition is the current trend that has gained focus over the decades. Most automation technologies use speech and speech recognition for various perspectives. This paper demonstrates an overview of major technological standpoint and gratitude of the elementary development of speech recognition and provides impression method has been developed in every stage of speech recognition using supervised learning. The project will use DNN to recognize speeches using magnitudes with large datasets.

Generative Adversarial Network를 이용한 손실된 깊이 영상 복원 (Depth Image Restoration Using Generative Adversarial Network)

  • 나준엽;심창훈;박인규
    • 방송공학회논문지
    • /
    • 제23권5호
    • /
    • pp.614-621
    • /
    • 2018
  • 본 논문에서는 generative adversarial network (GAN)을 이용한 비감독 학습을 통해 깊이 카메라로 깊이 영상을 취득할 때 발생한 손실된 부분을 복원하는 기법을 제안한다. 제안하는 기법은 3D morphable model convolutional neural network (3DMM CNN)와 large-scale CelebFaces Attribute (CelebA) 데이터 셋 그리고 FaceWarehouse 데이터 셋을 이용하여 학습용 얼굴 깊이 영상을 생성하고 deep convolutional GAN (DCGAN)의 생성자(generator)와 Wasserstein distance를 손실함수로 적용한 구별자(discriminator)를 미니맥스 게임기법을 통해 학습시킨다. 이후 학습된 생성자와 손실 부분을 복원해주기 위한 새로운 손실함수를 이용하여 또 다른 학습을 통해 최종적으로 깊이 카메라로 취득된 얼굴 깊이 영상의 손실 부분을 복원한다.

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi;Inkyu Park
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.378-385
    • /
    • 2023
  • Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

Improving Adversarial Domain Adaptation with Mixup Regularization

  • Bayarchimeg Kalina;Youngbok Cho
    • Journal of information and communication convergence engineering
    • /
    • 제21권2호
    • /
    • pp.139-144
    • /
    • 2023
  • Engineers prefer deep neural networks (DNNs) for solving computer vision problems. However, DNNs pose two major problems. First, neural networks require large amounts of well-labeled data for training. Second, the covariate shift problem is common in computer vision problems. Domain adaptation has been proposed to mitigate this problem. Recent work on adversarial-learning-based unsupervised domain adaptation (UDA) has explained transferability and enabled the model to learn robust features. Despite this advantage, current methods do not guarantee the distinguishability of the latent space unless they consider class-aware information of the target domain. Furthermore, source and target examples alone cannot efficiently extract domain-invariant features from the encoded spaces. To alleviate the problems of existing UDA methods, we propose the mixup regularization in adversarial discriminative domain adaptation (ADDA) method. We validated the effectiveness and generality of the proposed method by performing experiments under three adaptation scenarios: MNIST to USPS, SVHN to MNIST, and MNIST to MNIST-M.

Document Image Binarization by GAN with Unpaired Data Training

  • Dang, Quang-Vinh;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제16권2호
    • /
    • pp.8-18
    • /
    • 2020
  • Data is critical in deep learning but the scarcity of data often occurs in research, especially in the preparation of the paired training data. In this paper, document image binarization with unpaired data is studied by introducing adversarial learning, excluding the need for supervised or labeled datasets. However, the simple extension of the previous unpaired training to binarization inevitably leads to poor performance compared to paired data training. Thus, a new deep learning approach is proposed by introducing a multi-diversity of higher quality generated images. In this paper, a two-stage model is proposed that comprises the generative adversarial network (GAN) followed by the U-net network. In the first stage, the GAN uses the unpaired image data to create paired image data. With the second stage, the generated paired image data are passed through the U-net network for binarization. Thus, the trained U-net becomes the binarization model during the testing. The proposed model has been evaluated over the publicly available DIBCO dataset and it outperforms other techniques on unpaired training data. The paper shows the potential of using unpaired data for binarization, for the first time in the literature, which can be further improved to replace paired data training for binarization in the future.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles

  • Jung, Juho;Park, Manbok;Cho, Kuk;Mun, Cheol;Ahn, Junho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.3955-3971
    • /
    • 2020
  • Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.