DOI QR코드

DOI QR Code

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Inkyu Park (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2023.11.23
  • Accepted : 2023.11.30
  • Published : 2023.11.30

Abstract

Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

Keywords

Acknowledgement

This study was supported by the following grants: (1) National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT, No. 2021R1A2C3008742) and (2) Technology Innovation Program (02220146) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. A. Babu, S. Ranpariya, D. K. Sinha, and D. Mandal, "Deep Learning Enabled Perceptive Wearable Sensor: An Interactive Gadget for Tracking Movement Disorder", Adv. Mater. Technol., Vol. 8, No. 14, p. 2300046, 2023.
  2. B. W. Fling, C. Curtze, and F. B. Horak, "Gait Asymmetry in People with Parkinson's Disease Is Linked to Reduced Integrity of Callosal Sensorimotor Regions", Front. Neurol., Vol. 9, pp. 215(1)-215(8), 2018. https://doi.org/10.3389/fneur.2018.00001
  3. F. M. Garcia-Moreno, M. Bermudez-Edo, E. Rodriguez-Garcia, J. M. Perez-Marmol, J. L. Garrido, and M. J. Rodriguez-Fortiz, "A Machine Learning Approach for Semi-Automatic Assessment of IADL Dependence in Older Adults with Wearable Sensors", Int. J. Med. Inform., Vol. 157, p. 104625, 2022.
  4. H. B. Fromme, R. Karani, and S. M Downing, "Direct Observation in Medical Education: A Review of Literature and Evidence for Validity", Mt. Sinai J. Med., Vol. 76, No. 4, 365-371, 2009. https://doi.org/10.1002/msj.20123
  5. A. Neubert, O. B. Fernandes, A. Lucevic, M. Pavlova, L. Gulacsi, P. Baji, N. Klazinga, and D. Kringos, "Understanding the Use of Patient-Reported Data by Health Care Insurers: A Scoping Review", PLoS ONE, Vol. 15, No. 12, p. e0244546, 2020.
  6. N. M. Rad and E. Marchiori, "Learning for Healthcare Using Wearable Sensors", Digital Health, pp 137-149, 2021.
  7. F. C. G. Di Zubiena, G. Menna, I. Mileti, A. Zampogna, F. Asci, M. Paoloni, A. Suppa, Z. Del Prete, and E. Palermo, "Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson's Disease", Sensors, Vol. 22, No. 24, pp. 9903(1)-9903(16), 2022. https://doi.org/10.1109/JSEN.2021.3136033
  8. A. Talitckii, A. Anikina, E. Kovalenko, A. Shcherbak, O. Mayora, O. Zimniakova, E. Bril, M. Semenov, D. V. Dylov, and A. Somov, "Defining Optimal Exercises for Efficient Detection of Parkinson's Disease Using Machine Learning and Wearable Sensors", IEEE Trans. Instrum. Meas., Vol. 70, pp. 1-10, 2021. https://doi.org/10.1109/TIM.2021.3097857
  9. C. Ma, D. Li, L. Pan, X. Li, C. Yin, A. Li, Z. Zhang, and R. Zong, "Quantitative Assessment of Essential Tremor Based on Machine Learning Methods Using Wearable Device", Biomed. Signal Process. Control, Vol. 71, p. 103244, 2022.
  10. J.-S. Tan, S. Tippaya, T. Binnie, P. Davey, K. Napier, J. P. Caneiro, P. Kent, A. Smith, P. O'Sullivan, and A. Campbell, "Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models", Sensors, Vol. 22, No. 2, pp. 446(1)-446(16), 2022. https://doi.org/10.1109/JSEN.2021.3136033
  11. U. A. Siddiqui, F. Ullah, A. Iqbal, A. Khan, R. Ullah, S. Paracha, H. Shahzad, and K. S. Kwak, "Wearable-Sensors-Based Platform for Gesture Recognition of Autism Spectrum Disorder Children Using Machine Learning Algorithms", Sensors, Vol. 21, No. 10, pp. 3319(1)-3319(22), 2021, https://doi.org/10.1109/JSEN.2020.3039123
  12. T. Mullick, A. Radovic, S. Shaaban, and A. Doryab, "Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning-Based Exploratory Study", JMIR Form. Res., Vol. 6, No. 6, p. e35807, 2022.
  13. A. Ahmed, J. Ramesh, S. Ganguly, R. Aburukba, A. Sagahyroon, and F. Aloul, "Investigating the Feasibility of Assessing Depression Severity and Valence-Arousal with Wearable Sensors Using Discrete Wavelet Transforms and Machine Learning", Information, Vol. 13, No. 9, pp. 406(1)-406(11), 2022. https://doi.org/10.3390/info13090406
  14. J. P. Kimball, O. T. Inan, V. A. Convertino, S. Cardin, and M. N. Sawka, "Wearable Sensors and Machine Learning for Hypovolemia Problems in Occupational, Military and Sports Medicine: Physiological Basis, Hardware and Algorithms", Sensors, Vol. 22, No. 2, pp. 442(1)-442(25), 2022. https://doi.org/10.1109/JSEN.2021.3136033
  15. M. K. O'Brien, O. K. Botonis, E. Larkin, J. Carpenter, B. Martin-Harris, R. Maronati, K. Lee, L. R. Cherney, B. Hutchison, S. Xu, J. A. Rogers, and A. Jayaraman, "Advanced Machine Learning Tools to Monitor Biomarkers of Dysphagia: A Wearable Sensor Proof-of-Concept Study", Digit. Biomark., Vol. 5, No. 2, pp. 167-175, 2021. https://doi.org/10.1159/000517144
  16. G. Csizmadia, K. Liszkai-Peres, B. Ferdinandy, A. Miklosi, and V. Konok, "Human Activity Recognition of Children with Wearable Devices Using LightGBM Machine Learning", Sci. Rep., Vol. 12, No. 1, pp. 5472(1)-5472(10), 2022. https://doi.org/10.1038/s41598-021-99269-x
  17. E. M. Bochniewicz, G. Emmer, A. W. Dromerick, J. Barth, and P. S. Lum, "Measurement of Functional Use in Upper Extremity Prosthetic Devices Using Wearable Sensors and Machine Learning", Sensors, Vol. 23, No. 6, pp. 3111(1)-3111(13), 2023.
  18. M. T. Irshad, M. A. Nisar, X. Huang, J. Hartz, O. Flak, F. Li, P. Gouverneur, A. Piet, K. M. Oltmanns, and M. Grzegorzek, "SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors", Sensors, Vol. 22, No. 20, pp.7711(1)-7711(21), 2022. https://doi.org/10.1109/JSEN.2021.3136033
  19. D. Ravenscroft, I. Prattis, T. Kandukuri, Y. A. Samad, G. Mallia, and L. G. Occhipinti, "Machine Learning Methods for Automatic Silent Speech Recognition Using a Wearable Graphene Strain Gauge Sensor", Sensors, Vol. 22, No. 1, pp. 299(1)-299(13), 2021. https://doi.org/10.3390/s22010001
  20. A. Kadu, M. Singh, and K. Ogudo, "Novel Scheme for Classification of Epilepsy Using Machine Learning and a Fuzzy Inference System Based on Wearable-Sensor Health Parameters", Sustainability, Vol. 14, No. 22, pp. 15079(1)-15079(20), 2022.
  21. F. Delmastro, F. Di Martino, and C. Dolciotti, "Cognitive Training and Stress Detection in MCI Frail Older People Through Wearable Sensors and Machine Learning", IEEE Access, Vol. 8, pp. 65573-65590, 2020.
  22. W. K. Lim , S. Davila, J. X. Teo, C. Yang, C. J. Pua, C. Blocker, J. Q. Lim, J. Ching, J. J. L. Yap, S. Y. Tan, A. Sahlen, C. W.-L. Chin, B. T. Teh, S. G. Rozen, S. A. Cook, K. K. Yeo, and P. Tan, "Beyond Fitness Tracking: The Use of Consumer-Grade Wearable Data from Normal Volunteers in Cardiovascular and Lipidomics Research", PLoS Biol., Vol. 16, No. 2, pp. e2004285(1)-e2004285(18), 2018.
  23. V. K. Verma and S. Verma, "Machine Learning Applications in Healthcare Sector: An Overview", Mater. Today. Proc., Vol. 57, pp. 2144-2147, 2022. https://doi.org/10.1016/j.matpr.2021.12.101
  24. D. Boswell, Introduction to support vector machines, Departement of Computer Science and Engineering University of California, San Diego, 11, pp. 1-15, 2002.
  25. K. El Bouchefry and R. S. de Souza, "Learning in Big Data: Introduction to Machine Learning", In Knowledge Discovery in Big Data from Astronomy and Earth Observation, P. Skoda and F. Adam, Eds. Elsevier, Amsterdam, pp. 225-249, 2020.
  26. T. Ba, S. Li, and Y. Wei, "Data-Driven Machine Learning Integrated Wearable Medical Sensor Framework for Elderly Care Service", Measurement, Vol. 167, p. 108383, 2021.
  27. D. K. Jain, K. Srinivas, S. V. N. Srinivasu, and R. Manikandan, "Machine Learning-Based Monitoring System with IoT Using Wearable Sensors and Pre-Convoluted Fast Recurrent Neural Networks (P-FRNN)", IEEE Sens. J., Vol. 21, No. 22, pp. 25517-25524, 2021. https://doi.org/10.1109/JSEN.2021.3091626
  28. J. M. Fisher, N. Y. Hammerla, T. Ploetz, P. Andras, L. Rochester, and R. W. Walker, "Unsupervised Home Monitoring of Parkinson's Disease Motor Symptoms Using Body-Worn Accelerometers", Parkinsonism. Relat. Disord., Vol. 33, pp. 44-50, 2016. https://doi.org/10.1016/j.parkreldis.2016.09.009
  29. J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen, "Activity Classification Using Realistic Data from Wearable Sensors", IEEE Trans. Inform. Technol. Biomed., Vol. 10, No. 1, pp. 119-128, 2006. https://doi.org/10.1109/TITB.2005.856863
  30. Y. Yoshida and E. Yuda, "Workout Detection by Wearable Device Data Using Machine Learning", Appl. Sci., Vol. 13, No. 7, pp. 4280(1)-4280(8), 2023.
  31. J. Muangprathub, A. Sriwichian, A. Wanichsombat, S. Kajornkasirat, P. Nillaor, and V. Boonjing, "Novel Elderly Tracking System Using Machine Learning to Classify Signals from Mobile and Wearable Sensors", Int. J. Environ. Res. Public Health, Vol. 18, No. 23, pp. 12652(1)-12652(19), 2021.
  32. F. Sabry, T. Eltaras, W. Labda, F. Hamza, K. Alzoubi, and Q. Malluhi, "On-Device Dehydration Monitoring Using Machine Learning from Wearable Device's Data", Sensors, Vol. 22, No. 5, pp. 1887(1)-1887(20), 2022. https://doi.org/10.1109/JSEN.2021.3136033
  33. J. P. Cascales, D. A. Greenfield, E. Roussakis, L. Witthauer, X. Li, A. Goss, and C. L. Evans, "Wireless Wearable Sensor Paired with Machine Learning for the Quantification of Tissue Oxygenation", IEEE Internet. Things J., Vol. 8, No. 24, pp. 17557-17567, 2021. https://doi.org/10.1109/JIOT.2021.3081044
  34. A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A. C. Arias, and J. M. Rabaey, "Wearable Biosensing System with In-Sensor Adaptive Machine Learning for Hand Gesture Recognition", Nat. Electron., Vol. 4, No. 1, pp. 54-63, 2020. https://doi.org/10.1038/s41928-020-00510-8