• Title/Summary/Keyword: unstructured environment

Search Result 173, Processing Time 0.031 seconds

A Topic Modeling Analysis for Online News Article Comments on Nurses' Workplace Bullying (간호사의 직장 내 괴롭힘 관련 온라인 뉴스기사 댓글에 대한 토픽 모델링 분석)

  • Kang, Jiyeon;Kim, Soogyeong;Roh, Seungkook
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.6
    • /
    • pp.736-747
    • /
    • 2019
  • Purpose: This study aimed to explore public opinion on workplace bullying in the nursing field, by analyzing the keywords and topics of online news comments. Methods: This was a text-mining study that collected, processed, and analyzed text data. A total of 89,951 comments on 650 online news articles, reported between January 1, 2013 and July 31, 2018, were collected via web crawling. The collected unstructured text data were preprocessed and keyword analysis and topic modeling were performed using R programming. Results: The 10 most important keywords were "work" (37121.7), "hospital" (25286.0), "patients" (24600.8), "woman" (24015.6), "physician" (20840.6), "trouble" (18539.4), "time" (17896.3), "money" (16379.9), "new nurses" (14056.8), and "salary" (13084.1). The 22,572 preprocessed key words were categorized into four topics: "poor working environment", "culture among women", "unfair oppression", and "society-level solutions". Conclusion: Public interest in workplace bullying among nurses has continued to increase. The public agreed that negative work environment and nursing shortage could cause workplace bullying. They also considered nurse bullying as a problem that should be resolved at a societal level. It is necessary to conduct further research through gender discrimination perspectives on nurse workplace bullying and the social value of nursing work.

Association Analysis for Detecting Abnormal in Graph Database Environment (그래프 데이터베이스 환경에서 이상징후 탐지를 위한 연관 관계 분석 기법)

  • Jeong, Woo-Cheol;Jun, Moon-Seog;Choi, Do-Hyeon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.15-22
    • /
    • 2020
  • The 4th industrial revolution and the rapid change in the data environment revealed technical limitations in the existing relational database(RDB). As a new analysis method for unstructured data in all fields such as IDC/finance/insurance, interest in graph database(GDB) technology is increasing. The graph database is an efficient technique for expressing interlocked data and analyzing associations in a wide range of networks. This study extended the existing RDB to the GDB model and applied machine learning algorithms (pattern recognition, clustering, path distance, core extraction) to detect new abnormal signs. As a result of the performance analysis, it was confirmed that the performance of abnormal behavior(about 180 times or more) was greatly improved, and that it was possible to extract an abnormal symptom pattern after 5 steps that could not be analyzed by RDB.

Development of Data Visualization Tools for Land-Based Fish Farm Big Data Analysis System (육상 양식장 빅데이터 분석 시스템 개발을 위한 데이터 시각화 도구 개발)

  • Seoung-Bin Ye;Jeong-Seon Park;Hyi-Thaek Ceong;Soon-Hee Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.763-770
    • /
    • 2024
  • Currently, land-based fish farms utilizing seawater have introduced and are utilizing various equipment such as real-time water quality monitoring systems, facility automation systems, and automated dissolved oxygen supply devices. Furthermore, data collected from various equipment in these fish farms produce structured and unstructured big data related to water quality environment, facility operations, and workplace visual information. The big data generated in the operational environment of fish farms aims to improve operational and production efficiency through the development and application of various methods. This study aims to develop a system for effectively analyzing and visualizing big data produced from land-based fish farms. It proposes a data visualization process suitable for use in a fish farm big data analysis system, develops big data visualization tools, and compares the results. Additionally, it presents intuitive visualization models for exploring and comparing big data with time-series characteristics.

An Architecture for Managing Faulty Sensing Data on Low Cost Sensing Devices over Manufacturing Equipments (전문 설비의 이상신호 처리를 위한 저비용 관제 시스템 구축)

  • Chae, Yuna;Kim, Changi;Ko, Haram;Kim, Woongsup
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.113-120
    • /
    • 2018
  • In this study, we proposed a monitoring system for identifying and handling faulty sensing stream data on manufacturing equipments where low-cost sensors can be safely used. Low cost sensors will lessen the cost of implementing distributed monitoring system, but suffer from sensor noises and inaccurate sensed data. Therefore, a distributed monitoring system with low cost sensors should identify faulty signal data as either of sensor fault or machine fault, and filter out faulty signals from sensing fault. To this end, we adopted a fourier transform based diagnostic approach mixed with a weighed moving averaging method, in order to identify faulty signals. We measured how effective our approach is and found out our approach can filter out one-third faulty signals from our experimental environment. In addition, we attached wireless communication modules to reduce sensor and network installation cost. To handle massive sensor data efficiently, we employed unstructured data format with NoSQL based database.

Service Plan of National R&D Report System Using KANO Model (KANO모형을 이용한 국가R&D보고서 시스템의 서비스 방안)

  • Park, Man-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.364-373
    • /
    • 2014
  • The relationship between a service provided via the information system and user satisfaction has been thought of as an important factor for the development of a new service for the information system. In this study, the twelve new key services that are applicable to national R&D report system were derived by web environment changes in step with IT technology developments in order to support the new service for the user. The twelve new key services are as follows; semantic search service for national R&D report, associated report service, RSS service, mesh-up service, topic-map service, open API service, personalized service, collective intelligence service, SNS service, unstructured data service, detailed search service, mailing service. To assess the quality attribute of the twelve new key services in the national R&D report system, a survey was performed. In conclusion, a stepwise service plan for the national R&D report system was proposed which would use the satisfaction coefficient and the results of the service classification. The following step-by-step service should be developed by in this way. The unstructured data service, personalized service, associated report service, topic-map service, open API service, and the collective intelligence service are needed to develop the first step and RSS service, mesh-up service, semantic search service for the national R&D report, mailing service, detailed search service, and SNS service are needed to develop the second step.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

News Big Data Analysis of 'Tap Water Larvae' Using Topic Modeling Analysis (토픽 모델링을 활용한 '수돗물 유충' 뉴스 빅데이터 분석)

  • Lee, Su Yeon;Kim, Tae-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.28-37
    • /
    • 2020
  • This study was conducted to propose measures to improve crisis response to environmental issues by analyzing the news big data on the 'tap water larvae' situation and identifying related major keywords and topics. To accomplish this, 1,975 cases of 'tap water larvae' reported between July 13 to August 31, 2020 were divided into three periods and analyzed using topical modeling techniques. The analysis output 15 topics for each period. According to the result, the 'tap water larvae' incident, as reported in the media, is divided into the occurrence, diffusion, and rectification stages. The government's response and civilian risk consciousness and reaction could also be seen. Based on the result, the following measures to respond to environment risk is proposed. First, it is necessary to explore the various intertwined context with the 'tap water larvae' incident at its core and develop responsiveness to environmental problems through education which forms integrated views. Second, a role to monitor the environment must be implemented and civilian-participated environmental information must be shared through the application of internet communities. Third, the cultivation and deployment of environmental communicators who provide and communicate fast and accurate environment information is required. This study, as the first in Korea to use the topic modeling analysis method based on big data related to 'tap water larvae', has academic significance in that it has empirically and systematically analyzed environmental issues which appear as unstructured data. It also political significance as it suggests ways to improve environmental education and communication.

Big Data Utilization and Policy Suggestions in Public Records Management (공공기록관리분야의 빅데이터 활용 방법과 시사점 제안)

  • Hong, Deokyong
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.21 no.4
    • /
    • pp.1-18
    • /
    • 2021
  • Today, record management has become more important in management as records generated from administrative work and data production have increased significantly, and the development of information and communication technology, the working environment, and the size and various functions of the government have expanded. It is explained as an example in connection with the concept of public records with the characteristics of big data and big data characteristics. Social, Technological, Economical, Environmental and Political (STEEP) analysis was conducted to examine such areas according to the big data generation environment. The appropriateness and necessity of applying big data technology in the field of public record management were identified, and the top priority applicable framework for public record management work was schematized, and business implications were presented. First, a new organization, additional research, and attempts are needed to apply big data analysis technology to public record management procedures and standards and to record management experts. Second, it is necessary to train record management specialists with "big data analysis qualifications" related to integrated thinking so that unstructured and hidden patterns can be found in a large amount of data. Third, after self-learning by combining big data technology and artificial intelligence in the field of public records, the context should be analyzed, and the social phenomena and environment of public institutions should be analyzed and predicted.

Analysis of Networks among Design Engineers Using Product Data Objects (제품자료 객체를 이용한 설계자 네트워크 분석)

  • Cha, Chun-Nam;Do, Namchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.139-146
    • /
    • 2016
  • This study proposes a methodology to analyse social networks among participating design engineers during product development projects. The proposed methodology enables product development managers or the participating design engineers to make a proper decision on product development considering the performance of participating design engineers. It considers a product development environment where an integrated product data management (PDM) system manages the product development data and associated product development processes consistently in its database, and all the design engineers share the product development data in the PDM database for their activities in the product development project. It provides a novel approach to build social networks among design engineers from an operational product development data in the PDM database without surveys or monitoring participating engineers. It automatically generates social networks among the design engineers from the product data and relationships specified by the participants during the design activities. It allows analysts to gather operational data for their analysis without additional efforts for understanding complex and unstructured product development processes. This study also provides a set of measures to evaluate the social networks. It will show the role and efficiency of each design engineers in the social network. To show the feasibility of the approach, it suggests an architecture of social network analysis (SNA) system and implemented it with a research-purpose PDM system and R, a statistical software system. A product configuration management process with synthetical example data is applied to the SNA system and it shows that the approach enables analysts to evaluate current position of design engineers in their social networks.

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.