
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, Oct. 2017                                 4968 
Copyright ⓒ2017 KSII 

SuperDepthTransfer: Depth Extraction 
from Image Using Instance-Based 

Learning with Superpixels 
 

Yuesheng Zhu, Yifeng Jiang, Zhuandi Huang, and Guibo Luo 
Shenzhen Key Lab of Information Theory & Future Network Arch, Communication & Information Security Lab, 

Institute of Big Data Technologies 
Shenzhen Graduate School, Peking University 

Shenzhen, Guangdong 518055 - China 
[e-mail: zhuys@pkusz.edu.cn, jiangyifeng@sz.pku.edu.cn, 1101213414@sz.pku.edu.cn, 

luoguibo@sz.pku.edu.cn] 
*Corresponding author: Yuesheng Zhu 

 
Received November 18, 2016; revised March 26, 2017; revised May 5, 2017; accepted May 28, 2017; 

 published October 31, 2017 
 

 

Abstract 
 

In this paper, we primarily address the difficulty of automatic generation of a plausible depth 
map from a single image in an unstructured environment. The aim is to extrapolate a depth 
map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as 
well as visually pleasing. Our technique, which is fundamentally based on a preexisting 
DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs 
within a framework that replaces a pixel basis with one of instance-based learning. A vital 
superpixels feature enhancing matching precision is posterior incorporation of predictive 
semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter 
is leveraged to augment the final depth field. For training and evaluation, experiments were 
conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth 
estimation method outperforms state-of-the-art methods for the correlation coefficient metric, 
mean log10 error and root mean squared error, and achieves comparable performance for the 
average relative error metric in both efficacy and computational efficiency. This approach can 
be utilized to automatically convert 2D images into stereo for 3D visualization, producing 
anaglyph images that are visually superior in realism and simultaneously more immersive. 
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1. Introduction 

In sharp contrast with direct stereo shooting, a process that can extinguish 3D viability for 
promotion in film and television, 2D-to-3D conversion mandates efficient conversion of 
massive amounts of existing 2D content into 3D. Thus, 2D-to-3D conversion is gaining 
momentum as a pursuit of great significance. 

Normally, the 2D-to-3D conversion process is distributed into two basic steps: depth 
estimation for a given 2D image and subsequent Depth Image Based Rendering (DIBR) of a 
query image to form a stereopair. The rendering step is well understood, and algorithms exist 
that produce satisfactory results. The fundamental remaining challenge lies in the means to 
extract or infer accurate depth from an image. Notably, with increasing depth information 
comes the critically important concomitant capacity to reproduce parallax for 3D display 
technology. An ultimate aim is development to the point of implementation in applications 
such as 3D cinema, advertising, TV and desktop displays, among others [1]. Depth extraction, 
therefore, is the focus and concentration of this paper. 

A novel solution is presented in this report that generates a depth map that excels ordinary 
2D image based DepthTransfer algorithms by increasing fidelity, richness, and obvious depth 
order [2] [3]. Improvements are principally four-fold: 
- The first proposal is to transfer depth information at the level of Superpixel, which can 

provide superior spatial support for aggregating features that could belong to the same 
object and region. This also improves the accuracy of mapping, helps keep edge 
information of objects in the scene, and additionally, is computationally efficient in 
contrast with pixel-based approaches.  

- Second, depth information is incorporated into graph based image segmentation to define 
a novel pre-processing candidate set.  

- Next, there is simultaneous estimation of the semantic label and depth value for the same 
region. With the benefit of a known semantic label, depth transfer can be simpler and more 
precise.  

- Finally, employment of a cross bilateral filter, rather than sophisticated global 
optimization for depth map smoothing, is proposed. A cross bilateral filter not only can 
effectively eliminate a blocking effect; It can also help align the depth edge with the query 
image edges, all the while preserving a globally-consistent depth of the preliminary 
estimate. 

As an improved version of the Depth Transfer algorithm, this method is applicable to 
arbitrary images, and works well in cases where conventional depth recovery methods fail. It 
is clearly demonstrated that the depth map extracted from this proposed algorithm possesses a 
more accurate and richer depth level than state-of-the-art methods, and moreover, is sufficient 
to generate compelling 3D images when applied in 2D-to-3D conversion, as illustrated in Fig. 
1.  
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Fig. 1. Example of 2D-to-3D conversion resulting from application of the improved version of the 

DepthTransfer method. The left end shows the input query image and its corresponding extracted depth 
generated by this novel method. The right end is the result of the performance of DIBR and its 

respective yield of binocular vision. 

2. Related Work 
Depth map contains spatial information about the distance of the surfaces of scene objects 
from a viewpoint. This better addresses appearance, viewing angle, and complex lighting 
condition variations. Additionally, the depth map can provide complementary visual spatial 
information for a conventional planar RGB image, which only has three channels of color 
information. Therefore, to date, the depth map has been regarded as a rather vital source of 
visual data, and employed in various research fields to attain more promising results, such as 
2D-to-3D conversion [4], 3D reconstruction [5], augmented reality & virtual reality, pattern 
recognition (e.g. human action recognition [6], 3D object detection [7], and subspace learning 
[8]), automatic driving [9], and other applications. Apparently, depth extraction (or depth 
estimation) is increasingly becoming a subject of active research by the computer vision 
community.  

Depth Extraction can be roughly categorized into semiautomatic and automatic approaches. 
In the semiautomatic method, a skilled operator assigns depths to various parts of an image or 
video, which with error correction, can successfully yield a plausible depth map [10]. Depth 
assignment is also included in this category [11]. The latter automatic depth estimation method 
requires no operator intervention, as an elegant algorithm automatically estimates the 
depth—a more cost efficient approach.  

Typically, conventional automatic depth extraction methods rely on robust assumptions 
including shape from shading [12], structure from motion [13], depth from defocus [14], depth 
from visual saliency [15], depth from perspective geometry [16] and so on.  Despite that such 
methods have proved to be applicable to a restricted set of scenarios, they are suboptimal for 
arbitrary scenes.  

Machine-learning-inspired methods have recently been proposed to automatically estimate 
the depth map of a single monocular image. Compared to conventional methods, 
machine-learning-based methods make no assumptions on the use of scenarios, and lead to 
more accurate depth mapping. Hoiem et al. [17] created a convincing reconstruction of 
outdoor images by assuming an image could be broken into a few planar surfaces, and pixels 
could then be classified into limited labels, e.g., ground, sky, and vertical walls. Similarly, 
Delage et al. [18] developed a Bayesian framework for reconstructing indoor scenes. This 
framework would comprise a 3D algorithm [19, 20], and devise a supervised learning strategy 
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to infer the absolute depth of each pixel in the monocular image. This would assume that most 
3D scenes are made up of numerous small, approximately planar surfaces. With the use of 
Markov Random Field (MRF), Saxena et al. model both the monocular depth cues as well as 
the relationship between different parts of image. Make3D has been further improved to create 
realistic reconstructions for general scenes. The Semantic-Label algorithm [21] achieves 
better depth estimates by incorporating semantic labels to guide the 3D reconstruction process. 
Notably, though, such additional cues are not generally available. To address this issue, 
nonparametric methods [22 - 25] have been introduced. To produce the most likely depth map, 
these approaches proceed by firstly matching the high-level image features. This enables a 
search for candidates from a repository of 3D images (RGB plus corresponding Depth or 
stereopairs) that are photometrically similar. Then the depth of these candidates are fused in a 
variety of ways. Taking inspiration from this, Miaomiao Liu et al. implemented a 
nonparametric approach for the retrieval of candidate depth maps. They avoided the 
immediate fusion process by formulating depth estimation as an inference in a 
discrete-continuous graphical model [26].  

Accelerated interest has appeared more recently in employing deep learning methods [27 - 
29]. There have been attempts to regress depth immediately from the image [27]. An 
associated serious implication is over-fitting, as such a procedure might mandate hundreds of 
thousands of examples to train its model. Notably, when in short supply of training data, 
substandard performance is the result. Learning deep features for inferring superpixels depths 
directly, and subsequently trying to enforce coherence with a CRF to capture scene structure is 
examined by [28]. In a distinct departure from the above two methods, [29] regresses on a 
small set of depth reconstruction weights, and harnesses statistical regularities to the problem. 
This is the first application of couple dictionary learning and regression to depth estimation.  

In addition, many more probabilistic modeling approaches have been proposed recently, as 
reported for instance in [30] and [31]. Enlightened by psychophysical evidence of visual 
processing in human Vision System (HVS) and Natural Scene Statistics (NSS) models of 
image and range, [30] proposed a Bayesian framework to recover the range information from 
monocular image by adopting the statistical relationships between luminance and depth in 
natural scenes. In [31], Xiaoyan Wang et al. proposed a depth estimation conditional random 
field (CRF) model with the field of experts (FoE) as the prior. 

The DepthTransfer algorithm [2] [3] is closely allied to the nonparametric depth sampling 
method proposed by J. Konrad et al. in [24, 25]. It leverages an instance-based learning 
framework to extract a depth map from monocular images. Then it automatically converts 
them to stereoscopic images. Both make similar assumptions, e.g., appearance is correlated 
with depth. The DepthTransfer algorithm adheres to the “big data” philosophy of machine 
learning, and is inspired by the recent trend to employ large image databases for various 
computer vision tasks, such as object recognition [32] and image saliency detection [33]. In 
contrast to a model-based method like Make3D [19, 20] or Semantic-Label [21], an 
instance-based learning method like DepthTransfer avoids explicit definition of a parametric 
model. It also requires fewer assumptions and no training time. It scales better with respect to 
the training data size, and is still capable of generating a compelling 3D image.  

We build on this work by transferring depth to superpixels rather than pixels, and with the 
assistance of semantic labels, have enhanced depth warping precision. Additionally, modified 
Cross Bilateral Filter controlled by the query image has been leveraged into refining our final 
result.  
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3. System Description 
This system shares the DepthTransfer [2, 3] principle that two images that are photometrically 
similar also have a similar 3D structure and depth distribution. The depth extraction approach, 
as outlined in Fig. 2, has four stages: 

(1) Candidate Set Construction: Given a database with known depth and semantic 
information, retrieve candidate images whose depth may approximate that of the query image 
(input 2D image).  

(2) Pre-process: Segment both the query 2D image and candidate images into superpixels.  
(3) Depth map warping and fusion with semantic labeling at the superpixel level: 

Based on the selected candidate set, estimate the semantic label of superpixels in the input 
image. Next, generate a superpixel-level image mapping between the query   and candidate 
images. Finally, create an initial depth map via weighted fusion of multiple warped candidate 
depth maps.  

(4) Depth map correction: Guided by the query image, harness the modified Cross 
Bilateral Filter to correct the initial depth map. 

 

 
Fig. 2. Block diagram of the proposed overall algorithm. 

 

3.1 Candidate Set Construction 
Similar to various other data-driven methods, the first step is to find a relatively small 
candidate set from training images that can serve as the source of candidate matches at the 
superpixels level. This is accomplished not only for computational efficiency and tractability, 
but also to provide a scene-level context for the subsequent superpixels matching step.  

Given an input image, high-level features are computed of each image both in the dataset 
and the input image. To determine the matching score between two images, the GIST 
descriptor [34] is leveraged, which provides a holistic representation of the scene by 
measuring its global properties. Then the top K (a relatively very small portion of the dataset) 
matching images (i.e., KNN algorithm) are selected as a subset. This is necessary because 
images that are not photometrically similar to the input image are ineffective for estimating the 
depth. Although it incurs a loss of several depth relevant images, a significant reduction in 
volume of involved images must be accomplished. Remaining matching images are called 
candidate images, and their corresponding depths called candidate depths. 
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3.2 Pre-Process 
At the pre-process stage, the input and candidate set images are segmented into superpixels. 
From that point on superpixels are regarded as the basic processing unit for subsequent 
processing. Superpixels [35] are local, coherent regions, which not only reduce the complexity 
of the problem, but also give better spatial support for aggregating features that could belong 
to a single object than what pixels do. Superpixels are generated by exploiting the fast 
graph-based segmentation algorithm developed by Felzenszwalb and Huttenlocher [36]. 
 

 
Fig. 3. The comparison of conventional fast graph-based segmentation method and our improved one 

incorporating corresponding depth information. The left two images are the RGB image to be 
segmented and its matching depth map from the dataset. The third image is the result of conventional 

fast graph-based segmentation algorithm, and the last one is the segmented result of ours. 
 

For candidate images with known corresponding depth maps, an improvement on the fast 
graph-based segmentation algorithm [36] is achieved by incorporating RGB color and depth 
features into a similarity measure between adjacent nodes, as shown in Algorithm 1. This 
results in better segmentation, as illustrated in Fig. 3, possessing consistency in appearance as 
well as in depth. Admittedly, with the assistance of depth information, the improved 
segmentation method can naturally seize and recognize more object details due to the known 
depth of the scene.  

Algorithm 1: Improved Fast Graph-Based Segmentation. 
Input: RGB image and its corresponding Depth map (RGBD). 
Output: The segmented RGB image based on the Depth map. 
 Namely, 𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑟𝑟). 
 
1. Relative to the RGBD image, construct a graph 𝑮𝑮 = (𝑽𝑽,𝑬𝑬), with n vertices and m edges. 
The vertices Set is 𝑽𝑽 = (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛) and the edge set is 𝑬𝑬 = (𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚). The edge weight is 
calculated by Eq.1. 
2. Sort 𝑬𝑬 by non-decreasing edge weight.  
3. Start with an initial segmentation 𝑆𝑆𝑆𝑆𝑆𝑆0, where each vertice is in its own component, i.e., 
𝑆𝑆𝑆𝑆𝑆𝑆0 = ({𝑣𝑣1}, {𝑣𝑣2}, … , {𝑣𝑣𝑛𝑛}). 
4. for t = 1 to m do 

5.  if |𝒆𝒆𝒕𝒕| < 𝒎𝒎𝒎𝒎𝒎𝒎�𝒍𝒍𝒊𝒊 + 𝒌𝒌
�𝑪𝑪𝒊𝒊
𝒕𝒕−𝟏𝟏�

, 𝒍𝒍𝒋𝒋 + 𝒌𝒌

�𝑪𝑪𝒋𝒋
𝒕𝒕−𝟏𝟏�

�, 𝒌𝒌 is a constant. 

6.   Merge 𝑪𝑪𝒊𝒊𝒕𝒕−𝟏𝟏 and 𝑪𝑪𝒋𝒋𝒕𝒕−𝟏𝟏. 
7.  else 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−1. 
 8. End for 
5. Return 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 
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where 𝐶𝐶𝑖𝑖𝑡𝑡−1  indicates the component of 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−1  containing 𝑣𝑣𝑖𝑖  and 𝐶𝐶𝑗𝑗𝑡𝑡−1  containing 𝑣𝑣𝑗𝑗  in the 
𝑡𝑡 − 1𝑡𝑡ℎ iteration. Let 𝑒𝑒𝑡𝑡 be t-th edge connecting 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 in the ordering, i.e., 𝑒𝑒𝑡𝑡 = ( 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗). 𝑙𝑙𝑖𝑖 
and 𝑙𝑙𝑗𝑗 denote the maximum edge in the Minimum Spanning Tree (MST) of 𝐶𝐶𝑖𝑖𝑡𝑡−1 and 𝐶𝐶𝑗𝑗𝑡𝑡−1 
separately.  

𝑤𝑤�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗� = ��𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖) − 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅�𝑥𝑥𝑗𝑗��2
2 + 𝜆𝜆�𝐷𝐷(𝑥𝑥𝑖𝑖) − 𝐷𝐷�𝑥𝑥𝑗𝑗��2

2                  (1) 
 

After segmentation, the depth of a superpixel is defined as the mean depth of pixels within 
its region, and the semantic label of a superpixel is the category with the highest frequency 
within its region. 

 𝑑𝑑(𝑠𝑠) = 1
𝑁𝑁𝑠𝑠
∑ 𝐷𝐷(𝑥𝑥)𝑥𝑥∈𝑠𝑠           (2) 

 
 𝜔𝜔(𝑠𝑠) = 𝑎𝑎𝑎𝑎𝑎𝑎max𝜔𝜔𝑗𝑗�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠,𝜔𝜔𝑗𝑗)�          (3) 

 
where 𝑥𝑥 ∈ 𝑠𝑠 represents a single pixel that belongs to its superpixel s and 𝑁𝑁𝑠𝑠 denotes the number 
pixels within it. d(s) and 𝜔𝜔(𝑠𝑠) are the defining depth and semantic label of the superpixel s. 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠,𝜔𝜔𝑗𝑗) is the number of pixels with identical label 𝜔𝜔𝑗𝑗 in superpixel s. 

To describe superpixels more succinctly, 16 different features somewhat in alignment with 
those of Malisiewcz and Efros’ work [37] are adopted. These have influenced a number of 
modifications and additions. A complete list of the feature descriptors is shown in Table 1. 
 

Table 1. Features for Superpixels. 
Type Name Dimension 

Shape Mask of superpixels shape over its bounding box (8×8). 64 

Bounding box width/height relative to image 
width/height. 

2 

Superpixels area relative to the area of the image. 1 

Location Mask of superpixels shape over the image. 64 

Top height of bounding box relative to image height. 1 

Color RGB color mean and std dev. 3×2 

Color histogram (RGB, 11 bins per channel, dilated by 
10 pixels color histogram. 

33×2 

DSIFT Quantized SIFT histogram, dilated by 10 pixels 
quantized SIFT histogram 

100×2 

Left / right / top / bottom boundary quantized SIFT 
histogram. 

100×4 

Textures  Statistics texture energy and texture kurtosis of the filter 
bank containing of 17 filters 

34 

 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017                            4975 

3.3 Depth map warping and fusion 

3.3.1 Semantic Labeling  
Once the input image is segmented and the features 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑀𝑀 (𝑀𝑀 = 16) as described in 
Table 1 of all superpixels are extracted, a log likelihood ratio score 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠�𝜔𝜔𝑗𝑗� for each 
target superpixel s, as well as for each semantic class 𝜔𝜔𝑗𝑗  present in the candidate set, is 
attained. As reported in [38], the log likelihood ratio is defined as (4) and (5), where 𝜔𝜔𝚥𝚥��� is the 
set of all classes excluding 𝜔𝜔𝑗𝑗 . Each likelihood ratio is computed with the help of 
nonparametric density estimates of features from the required classes in the neighborhood of 
𝑓𝑓𝑚𝑚. 

𝜔𝜔�(𝑠𝑠) = 𝑎𝑎𝑎𝑎𝑎𝑎max𝜔𝜔𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠|𝜔𝜔𝑗𝑗)                                          (4) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠�𝜔𝜔𝑗𝑗� = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑠𝑠|𝜔𝜔𝑗𝑗)
𝑃𝑃(𝑠𝑠|𝜔𝜔𝚥𝚥����)

= 𝑙𝑙𝑙𝑙𝑙𝑙∏ 𝑃𝑃(𝑓𝑓𝑚𝑚|𝜔𝜔𝑗𝑗)
𝑃𝑃(𝑓𝑓𝑚𝑚|𝜔𝜔𝚥𝚥����)

𝑀𝑀
𝑚𝑚=1                          (5) 

Specifically, let 𝐷𝐷 denote the set of superpixels in the training set, and 𝑁𝑁𝑚𝑚 be the set of all 
superpixels in the candidate set whose feature distance from 𝑓𝑓𝑚𝑚 is below a fixed threshold 𝑡𝑡𝑚𝑚. 
Thus： 

𝑃𝑃(𝑓𝑓𝑚𝑚|𝜔𝜔𝑗𝑗)
𝑃𝑃(𝑓𝑓𝑚𝑚|𝜔𝜔𝚥𝚥����)

= 𝑛𝑛(𝜔𝜔𝑗𝑗,𝑁𝑁𝑚𝑚)/𝑛𝑛(𝜔𝜔𝑗𝑗,𝐷𝐷)
𝑛𝑛(𝜔𝜔𝚥𝚥����,𝑁𝑁𝑚𝑚)/𝑛𝑛(𝜔𝜔𝚥𝚥����,𝐷𝐷)

                                          (6) 

where  𝑛𝑛(𝜔𝜔𝑗𝑗, 𝑆𝑆) is the number of superpixels in set S with class label 𝜔𝜔𝑗𝑗. The superpixel 
neighbors 𝑁𝑁𝑚𝑚 are found by nearest search measured by Euclidean distance. 
 

3.3.2 Depth Map Warping 
The texture feature has high utility to describe the target superpixels with a known semantic 
label. Similarity can be defined as 𝑠𝑠𝑠𝑠𝑠𝑠�𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗� between the two superpixels 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 as in (7). 
When belonging to an identical semantic class, similarity is non-negative, and when they have 
different semantic labels, the similarity is equal to zero. 
 

 𝑠𝑠𝑠𝑠𝑠𝑠�𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗� = �
1

1+𝑒𝑒𝑒𝑒𝑒𝑒(��𝑓𝑓𝑠𝑠𝑖𝑖−𝑓𝑓𝑠𝑠𝑗𝑗�2
�−𝜇𝜇)/𝜎𝜎

            , 𝑖𝑖𝑖𝑖  𝜔𝜔(𝑠𝑠𝑖𝑖) = 𝜔𝜔�𝑠𝑠𝑗𝑗�

0                                  , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                 (7) 

𝑆𝑆𝑖𝑖𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑆𝑆𝑗𝑗∈𝐼𝐼𝑘𝑘

�𝑠𝑠𝑠𝑠𝑠𝑠�𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗��                                             (8) 

 
where 𝜇𝜇 and 𝜎𝜎  are constants. 𝑓𝑓𝑠𝑠𝑖𝑖  denotes the texture feature of superpixel 𝑠𝑠𝑖𝑖 . Through the 
similarity comparison, every superpixel 𝑠𝑠𝑖𝑖 in the input image will match the most similar 
superpixel 𝑆𝑆𝑖𝑖𝑘𝑘 in each candidate image 𝐼𝐼𝑘𝑘. We then define this corresponding superpixel  𝑆𝑆𝑖𝑖𝑘𝑘 in 
(8) as the one which possesses the maximum similarity among all superpixels 𝑆𝑆𝑗𝑗 ∈ 𝐼𝐼𝑘𝑘. 

With similarity and mapping principle thus defined, the input image is warped with each 
respective candidate image at the superpixels level, as shown in Fig. 4. The weight of the 
warping is precisely defined by the similarity between two matched superpixels. 
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Fig. 4. Depth Map Warping in Superpixels Level. 

3.3.3 Depth Map Fusion 
Each warped candidate depth figures to be a rough approximation of the target’s depth map.  
Thus the initial depth map can be computed by applying the mean operator across the warped 
candidate depth maps at each superpixel as (9) describes, where 𝑠𝑠𝑖𝑖 is superpixel i in target 
image and 𝑑̂𝑑 is its fusing depth. 𝑠𝑠𝑖𝑖𝑘𝑘 is the matched superpixel in candidate image k, of which 
𝑑𝑑𝑘𝑘denotes its depth and 𝑤𝑤𝑖𝑖

𝑘𝑘 is its responding weight defined by (10). This process is depicted 
in Fig. 5 below. 

𝑑̂𝑑(𝑠𝑠𝑖𝑖) =
∑ 𝑤𝑤𝑖𝑖

𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝑑𝑑𝑘𝑘�𝑠𝑠𝑖𝑖

𝑘𝑘�

∑ 𝑤𝑤𝑖𝑖
𝑘𝑘𝐾𝐾

𝑘𝑘=1
                                                 (9) 

     

𝑤𝑤𝑖𝑖𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖𝑘𝑘)                                                   (10) 

 
Fig. 5. Depth Map Fusion in Superpixels Level. 
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3.4 Depth Map Correction 
At this point, the fused depth may suffer inaccuracies and lack certain spatial smoothness. To 
alleviate this, modified cross bilateral filtering (CBF), as demonstrated by [39, 40], is applied. 
CBF is an edge-preserving image smoothing method that basically applies anisotropic 
diffusion controlled by local image content [39]. In keeping with Konrad et al. [22], the 
original is modified and the external input RGB image guided the diffusion. 

Modified CBF is defined in (11) (12) (13), where 𝑥𝑥 represents the pixel, and 𝑦𝑦 denotes the 
eight connected neighbor pixels around 𝑥𝑥. 𝐷𝐷 and 𝐷𝐷′ are the depth map before filtering and 
after filtering. 𝑤𝑤(𝑥𝑥,𝑦𝑦) is the weight of pixel 𝑦𝑦 to 𝑥𝑥 defined in (12), which is determined not 
only by space discontinuities ℎ𝜎𝜎𝑠𝑠  of the internal fused depth field but also by luminance 
discontinuities ℎ𝜎𝜎𝑟𝑟 of the external RGB query image. In this fashion, the final result preserves 
the global depth properties, but smooths the depth field among superpixels while still keeping 
the depth edges sharp and aligned with the query RGB image structure. ℎ𝜎𝜎 is a Gaussian 
weighting function. We display the qualitative effect of depth map correction in Fig. 6 as 
follows. 
 

𝐷𝐷′(𝑥𝑥) =
∑ 𝐷𝐷(𝑦𝑦)𝑤𝑤(𝑥𝑥,𝑦𝑦)𝑦𝑦

∑ 𝑤𝑤(𝑥𝑥,𝑦𝑦)𝑦𝑦
                                               (11) 

 𝑤𝑤(𝑥𝑥,𝑦𝑦) = ℎ𝜎𝜎𝑠𝑠(𝑦𝑦 − 𝑥𝑥)ℎ𝜎𝜎𝑟𝑟(𝐼𝐼(𝑦𝑦) − 𝐼𝐼(𝑥𝑥))      (12) 

 ℎ𝜎𝜎(∙) = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒 (−‖∙‖2

2𝜎𝜎2
)        (13) 

 
Fig. 6. An illustration of depth map correction. The left column is the RGB query image, and the middle 
column is its corresponding estimated depth field. After modified CBF processing, the smoothed result 
is demonstrated in the right column. It is apparent that the final depth map is entirely smoothed, while 

depth edges, if any, are aligned with features in the query image. 

4. Experiments 
The approach is tested on the publicly available dataset from Saxena et al.: The Make3D 

dataset #1[19] [41]. It is composed of 534 outdoor images with corresponding depth maps 
generated by a laser range finder. The corresponding semantic class labels are hand-annotated 
by Koller et al. as one of: sky, tree, road, grass, water, building, mountain, and foreground 
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object [21]. The Make3D images are of 1704×2272 resolution, but notably the corresponding 
fields are only of 55×305 spatial resolution. The sensor used to collect ground truth 
measurements has a range of 81m. The dataset is divided into 400 training samples and 134 
testing samples. All images were resized to 240×320 before performing the experiment.  

The proposed algorithm is compared with four state-of-the-art learning-based depth 
extraction methods: Depth MRF [20], Make3D [19], SemanticLabel [21] and DepthTransfer 
[2, 3]. Depth MRF takes the advantage of discriminatively-trained Markov Random Field 
(MRF) considering multiscale local- and global-image features to model depths at individual 
points and relation between depths at diverse points. Make3D estimates a 3D scene structure 
from a single still image of an unstructured environment by supervised learning of 3D position 
and orientation of small homogeneous patches in the image. The SemanticLabel algorithm 
first performs a semantic segmentation of the scene and uses the semantic labels to guide the 
3D reconstruction. DepthTransfer consists of finding nearest neighbors using high-level 
features, followed by SIFT-flow to warp the depth fields to the current image. It also performs 
optimization to combine the warped depths while imposing a smoothness constraint and a 
global depth prior. 

For quantitative performance evaluation of separate algorithms, the selected metrics are 
average relative error (𝑟𝑟𝑟𝑟𝑟𝑟), correlation coefficient (𝜌𝜌), mean log10 error (𝑙𝑙𝑙𝑙𝑙𝑙10 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and 
root mean square (𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). These are defined in (14), (15), (16) and (17) respectively, 
where 𝐷𝐷(𝑥𝑥) is the ground truth depth for pixel 𝑥𝑥, 𝐷𝐷�(𝑥𝑥) is the estimated depth, 𝑁𝑁 indicates the 
number of pixels in the input image, and 𝜇𝜇𝐷𝐷, 𝜇𝜇𝐷𝐷� are the empirical means of 𝐷𝐷 and 𝐷𝐷�, while 𝜎𝜎𝐷𝐷 
and 𝜎𝜎𝐷𝐷�  are the corresponding empirical standard deviations. Quantitative measures are 
averaged over all images in the test set. 
 

𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁
∑ (�𝐷𝐷�(𝑥𝑥)− 𝐷𝐷(𝑥𝑥)� 𝐷𝐷(𝑥𝑥)⁄ )𝑥𝑥                                          (14) 

 
𝜌𝜌 = 1

𝑁𝑁𝜎𝜎𝐷𝐷�𝜎𝜎𝐷𝐷
∑ (𝐷𝐷�(𝑥𝑥)− 𝜇𝜇𝐷𝐷�)(𝐷𝐷(𝑥𝑥) − 𝜇𝜇𝐷𝐷)𝑥𝑥                                     (15) 

 
𝑙𝑙𝑙𝑙𝑙𝑙10 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1

𝑁𝑁
∑ �𝑙𝑙𝑙𝑙𝑙𝑙10 �𝐷𝐷�(𝑥𝑥)� − 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷(𝑥𝑥))�𝑥𝑥                         (16) 

 

𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �1
𝑁𝑁
∑ (𝐷𝐷�(𝑥𝑥) − 𝐷𝐷(𝑥𝑥))2𝑥𝑥                                       (17) 

 

An important parameter to be determined in the proposed algorithm is the size 𝐾𝐾 of the 
candidate set. To obtain a proper 𝐾𝐾, both metrics are evaluated over the entire dataset by 
assigning different values to 𝐾𝐾 among {5, 10, 30, 50, 100, 200}. Both quantitative metrics 
rise rapidly when a comparatively small k value is adopted, a maximum is attained upon an 
increase to 𝐾𝐾 = 30, and then a tapering off takes effect. Therefore, ongoing experiments use 
𝐾𝐾 = 30. 

Table 2 shows quantitative results obtained from 134 test images of the Make3D dataset 
using various algorithms. The currently proposed method achieves state-of-the-art 
performance for the correlation coefficient metric (𝜌𝜌), mean log10 error and root mean 
squared error (𝑅𝑅𝑅𝑅𝑅𝑅-error). And it achieves comparable performance for the average relative 
error metric (𝑟𝑟𝑟𝑟𝑟𝑟), which measures the average depth error on every single pixel intuitively 
indicating the estimating precision. Whereas our proposed method is slightly inferior to the 
DepthTransfer algorithm on 𝑟𝑟𝑟𝑟𝑟𝑟  despite succeeding the identical instance-based learning 
framework. We suppose DepthTransfer emphasizes estimating and optimizing the depth map 
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via every single pixel while sacrificing the computational complexity. Comparatively, our 
method considers the consistency and depth relevance of a group of photometrically similar 
pixels (superpixels). As regards the metric based on the precision of every pixel, to some 
extent, we may mistakenly predict some depth information, yet we achieve significantly better 
overall depth map (see Fig. 7). Furthermore, it’s noted that ground truth of Make3D dataset 
has a relatively low resolution due to the limitation of laser range finder, and it may also exert 
uncertain impact on the final results. The correlation coefficient metric (𝜌𝜌) measures the 
correctness of the depth order. Relative depth, is universally recognized as the more 
appropriate metric for scene understanding. Thus, this proposed method extracts a more 
suitable depth map for applications of 2D-to-3D conversion.  

Note that the relative error metric (𝑟𝑟𝑟𝑟𝑟𝑟), mean log10 error and root mean squared error 
(𝑅𝑅𝑅𝑅𝑅𝑅-error) all follow the rule of “lower is better” (i.e., the lower these metrics are, the better 
the performance becomes), and conversely, the correlation coefficient metric (𝜌𝜌) follows the 
rule of “higher is better” as shown in Table 2. 
 

Table 2. Comparison of Quantitative Evaluation Results. 

Methods 
Lower is better Higher is better 

𝒓𝒓𝒓𝒓𝒓𝒓 𝑹𝑹𝑹𝑹𝑹𝑹 𝒍𝒍𝒍𝒍𝒍𝒍𝟏𝟏𝟏𝟏 𝝆𝝆 

Depth MRF [20] 0.530 16.7 0.198 - 

Make3D [19] 0.370 - 0.187 0.65 

SemanticLabel [21] 0.375 - 0.148 0.68 

DepthTransfer [2, 3] 0.361 15.2 0.148 0.71 

Proposed  0.367 15.0 0.144 0.78 
 

Several examples of depth maps estimated by diverse approaches are illustrated in Fig. 7. 
Compared to other methods, the proposed method extracted a depth map with superior 
correctness, richness, and obvious depth level. Final results confirmed higher consistency of 
depth fields and a better depth edge alignment with ground truth. 

Due to the limited precision of the laser range finder that collected the Make3D dataset, the 
resolution of the ground truth depth map is relatively low. In some cases, the depth map 
extracted from the proposed algorithm has a richer and more obvious depth level than ground 
truth one. Fig. 7(c) demonstrates, for instance, that there are only three depth levels (ground, 
nearby tree and sky) in the ground truth depth map. However, in the proposed method’s depth 
map, there are evidently five levels (ground, nearby tree, the distant tree, building and sky). 
Therefore, the depth map extracted by this method possesses richer layers. And it comprises 
more abundant scene contents with greater fidelity to human perception of the 3D world. 
 

Input           GroundTruth         Make3D         SemanticLabel   DepthTransfer       Proposed 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7. Single image results obtained from test images in the Make3D dataset. Each result contains the 
following six images (from left to right): input image, ground truth depth map, depth map produced by 

Make3D algorithm, depth map produced by SemanticLabel algorithm, depth map produced by 
DepthTransfer algorithm, depth map produced by the proposed algorithm. The depth maps are show in 
linear scale. Darker pixels indicate nearby objects (black appears at approximately 1m away) and lighter 

pixels indicate objects farther away (white appears approximately at 81m away). 
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For further validation of every improvement included in this paper, comparative 
experiments were conducted on the Make3D dataset. In leveraging the control variate scheme, 
one improvement was changed at a time, while leaving the others unaltered. Error reporting 
was accomplished with the above mentioned three commonly-used metrics, defined in (14), 
(16), and (17).  Table 3 summarizes the quantitative comparison results as follows: In method 
1, the improved fast graph-based segmentation method was changed into the conventional one 
[30] with no consideration of any corresponding depth information. In method 2, no semantic 
label was included when performing depth map warping. The cross bilateral filter of method 3 
was not selected as the final correction step. As for the effectiveness of regarding the 
superpixels as the processing unit rather than pixels, it was verified by revision of the 
algorithm of Depth Fusion [23] in method 4. This is also based on the framework of an 
instance-based learning method, though the Depth Fusion algorithm is totally based on pixels. 
Additionally, results of our full model and state-of-the-art DepthTransfer method serving as a 
contrast are listed.  
 
Table 3. Quantitative Make3D dataset comparison of final results with those obtained 1) without depth 
information in fast graph-based segmentation, 2) without consideration of semantic label in depth 
warping, 3) without cross bilateral filter as correction, 4) using a revised Depth Fusion method [23] 
based on pixels, 5) using our entire model, and 6) using the DepthTransfer method, where the control 
variate scheme was adopted to quantitatively test every proposed improvement. For clarification, best 
results are marked in red. 

Methods (Control Variate Scheme) 
Lower is better 

𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑅𝑅𝑅𝑅𝑅𝑅 

1. KNN search+FGBS without depth information+Depth warping 
(superpixels)+CBF 

0.420 0.960 16.700 

2. KNN search+IFGBS+Depth warping without semantic label 
(superpixels)+CBF 

0.382 0.161 15.900 

3. KNN search+IFGBS+Depth warping(superpixels) without 
CBF 

0.375 0.155 15.400 

4. Revised Depth Fusion [23]: KNN search+Depth 
warping(pixels)+CBF 

0.377 0.154 15.500 

5. Full Model 0.367 0.144 15.000 

6. DepthTransfer [2,3] 0.361 0.148 15.200 

 FGBS: Fast Graph-Based Segmentation. 
 IFGBS: Improved Fast Graph-Based Segmentation. 
 CBF: Cross Bilteral Filter. 
 
 

Advantages of using the four improvements are shown as three metrics in Table 3. They are: 
1) improved fast graph-based segmentation, 2) taking semantic information used as a 
reference, 3) depth correction with CBF, and 4) depth estimation at the superpixel level. 
Verification of effectiveness was accomplished by a stepwise comparison of each method, 1 
through 4, against method 5. Among these four improvements, the improved fast graph-based 
segmentation is the major contributor, while the other three also have enhanced the algorithm 
to varying degrees.  
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GroundTruth             Make3D              SemanticLabel         DepthTransfer             Proposed 

 
(a) 

 
(b) 

Fig. 8. Anaglyph images generated by employing depth maps of different algorithms. From left to right, 
respectively: The ground truth, the Make3D algorithm, SemanticLabel algorithm, the DepthTransfer 
algorithm, and the proposed algorithm. Note that the anaglyph images here should be viewed in color 

through red-blue anaglyph glasses. 
 

Further implementation of the DIBR (Depth Image Based Rendering) algorithm is done in 
accordance with [42], and converted the input image into stereo pairs, accomplishing the 
entire 2D-to-3D conversion. Anaglyph images based on different depth maps extracted by 
various methods are shown in Fig. 8, shows. Among the following conversions, none are 
flawless. But anaglyph images generated by the proposed algorithm are undeniably more 
visually pleasing and appealing. 

Computational complexity comparison of various methods is illustrated in Table 4. The 
running-time experiment was conducted in an identical hardware and software configuration 
environment (CPU: Intel Core i7-4790 3.60GHz, RAM: 8 GB; MATLAB version: R2014a). 
Although Make3D displays optimal efficiency, it is a model-based learning algorithm that 
requires a prodigious amount of pre-training time, and whenever the dataset is updated or 
expanded, re-training is always mandated. The proposed method comprises improvements 
based on the DepthTransfer algorithm. Although image segmentation and semantic labeling 
are required, an average running time of 1 minute per frame has been attained, a remarkable 
velocity far superior to that of DepthTransfer. Compared to pixel-based mapping, 
superpixel-based image mapping exponentially diminishes mapping complexity and 
computational complexity.  
 

Table 4. Running Time Comparison Results (Minute/Frame). 
Method Running time 

Make3D [19] 0.6 

SemanticLabel [21] 2 

DepthTransfer [2, 3] 2.3 

Proposed 1.0 
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5. Conclusion 
The key but elusive challenge of 2D-to-3D conversion lies in estimating depth from a single 
image. Significant improvement of the DepthTransfer algorithm is attained by incorporating 
superpixels and semantic labels. Tests of the proposed algorithm against state-of-the-art 
methods demonstrate the superiority in the metrics of the correlation coefficient metric, mean 
log10 error and root mean squared error and the comparable performance for the average 
relative error metric. The proposed algorithm performs favorably both in terms of estimated 
depth quality as well as in computational complexity.  Depth maps extracted from the 
proposed algorithm have more accurate and richer depth levels, and in sum, produce highly 
compelling 3D images. 
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