• 제목/요약/키워드: unstiffened

검색결과 80건 처리시간 0.03초

Comparative behaviour of stiffened and unstiffened welded tubular joints of offshore platforms

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.321-331
    • /
    • 2003
  • The paper presents the results of an experimental investigation conducted on welded tubular joints, that are employed in offshore platforms, to study the behaviour and strength of these joints under axial brace compression loading. The geometrical configuration of the joints tested were T and Y. The nominal diameter of the chord and brace members of the joint were 324 and 219 mm respectively. The chord thickness was 12 mm and the brace 8 mm. The tested joints are approximately quarter size when compared to the largest joints in the platforms built in a shallow water depth of 80 m in the Bombay High field. Some of the joints were actually fabricated by a leading offshore agency which firm is directly involved in the fabrication of prototype structures. Strength of the internally ring-stiffened joints was found to be almost twice that of the unstiffened joints of the same configuration and dimensions. Bending of the chord as a whole was observed to be the predominant mode of deformation of the internally ring-stiffened joints in contrast to ovaling and punching shear of the unstiffened joints. It was observed in this investigation that unstiffened joint was stiffer in ovaling mode than in bending and that midspan deflection of unstiffened joint was insignificant when compared to that of the internally ring stiffened joint. The measured midspan deflection of the unstiffened joint in this investigation and its relation with the applied axial load compares very well with that predicted for the brace axial displacement by energy method published in the literature. A comparison of the measured deflection and ovaling of the unstiffened joint was made with that published by the author elsewhere in which numerical prediction of both quantities have been made using ANSYS software package. The agreement was found to be quite good.

내부가 유체로 채워진 보강원통쉘의 동적거동 해석 (Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid)

  • 염기언;윤경호;이영신;김종균
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

비보강받침접합의 용접강도와 설계도표 (The Weld Strength and Design Tables for the Unstiffened Seated Connections)

  • 최선규;유정한;이강민;박재우
    • 한국강구조학회 논문집
    • /
    • 제24권2호
    • /
    • pp.199-206
    • /
    • 2012
  • 비보강받침접합(Unstiffened Seated Connection, USC)은 시공의 편의성과 설치시의 안정성 및 경제성이 있는 단순접합의 한 종류이다. 비보강받침접합은 하부ㄱ형강과 상부ㄱ형강으로 구성되며 하부ㄱ형강은 보의 단부반력전체를 지지하며, 상부ㄱ형강은 보의 안정을 위하여 설치한다. 상부와 하부ㄱ형강은 볼트 또는 용접에 의해 보와 지지부재에 접합된다. 본 연구에서는 비보강받침접합의 용접강도에 대한 실용적인 설계절차와 함께 용접부의 편심계산시 탄성벡터법(EVM)과 순간회전중심법(ICM)으로 소요지압길이에 근거한 설계도표를 제안하였다. 또한 제안한 설계방법에 의한 용접강도를 AISC와 KBC기준에 따라 비교하였다.

비보강 확장단부판 접합부의 에너지소산능력 평가 (Evaluation of the Energy Dissipation Capacity of an Unstiffened Extended End-plate Connection)

  • 이수권;양재근
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2015
  • 확장단부판(extended end-plate) 접합부는 보-기둥 모멘트 접합부의 한 형태로 접합부를 구성하는 단부판(end-plate)의 두께 및 길이, 고장력볼트의 개수 및 직경, 고장력볼트의 게이지 거리, 용접부의 치수 및 길이 등에 따라서 상이한 거동특성과 에너지소산능력을 발현한다. 이러한 확장단부판(extended end-plate)는 미국 및 유럽 등지에서는 다양한 기하학적 형상으로 기둥-보 접합부에 적용되고 있다. 그러나 현재 우리나라에서는 강구조 보-기둥 접합부에 적극적으로 적용되고 있지 못한 상황이다. 이렇게 적용성이 높지 않은 이유로는 기하학적 형상변화에 따른 설계강도식 제안, 에너지소산능력 평가 및 시공지침의 제공이 적절하게 이루어지지 못하고 있기 때문이다. 따라서 이 연구에서는 단부판(end-plate) 두께가 상대적으로 얇은 기하학적 형상을 갖는 비보강 확장단부판(unstiffened extended end-plate) 접합부의 에너지소산능력을 평가하여 에너지소산능력 예측모델을 제안하기 위한 기초자료를 제공하기 위하여 진행하였다. 이를 위하여 비보강 확장단부판(unstiffened extended end-plate) 접합부에 대한 3차원 비선형 유한요소해석을 단부판(end-plate)의 두께를 변수로 하여 수행하였다.

Energy Dissipation and Mean Crushing Strength of Stiffened Pates in Crushing

  • Lee, J.W.;Choung, J.M.
    • Journal of Hydrospace Technology
    • /
    • 제2권1호
    • /
    • pp.27-40
    • /
    • 1996
  • The prediction of the crushing strength and corresponding energy dissipation of unstiffened and stiffened plates under axial compression is discussed. Semi-empirical formulae for the crushing strength and dissipation energy of these stiffened plates are derived from the assesment of the structural behavior of unstiffened and stiffened box columns consisted of rectangular plates with longitudinal, transverse and orthogonal stiffeners. To demonstrate the effectiveness of proposed formulae, they are compared with the existing formulae and experimental results, which are shown in good agreements.

  • PDF

Vibration Correlation Technique을 이용한 내부 압력을 받는 금속재 단순 원통 구조의 비파괴적 전역 좌굴 하중 예측 (Nondestructive Buckling Load Prediction of Pressurized Unstiffened Metallic Cylinder Using Vibration Correlation Technique)

  • 전민혁;공승택;조현준;김인걸;박재상;유준태;윤영하
    • 한국항공우주학회지
    • /
    • 제50권2호
    • /
    • pp.75-82
    • /
    • 2022
  • 내부 압력과 압축하중을 받는 발사체 추진제 탱크 구조의 좌굴 하중을 비파괴적으로 예측할 수 있는 기법이 필요하다. 기하학적 초기 결함이 존재하는 단순 원통 구조의 전역 좌굴 하중은 좌굴이 발생하지 않는 범위에서의 고유진동수-압축하중의 상관관계를 이용한 Vibration correlation technique (VCT)을 사용하여 비파괴적으로 예측 가능하다. 본 연구에서는 내부 압력과 압축하중을 동시에 받는 추진제 탱크 구조 형태인 얇은 금속재 단순 원통 구조의 진동 및 좌굴 시험을 수행하였고 VCT를 이용하여 전역 좌굴 하중을 예측하였다. 두께가 얇은 구조의 진동 시험을 위해 스피커를 이용한 비접촉식 가진 방법을 이용하였고 응답은 고분자 압전 센서(PVDF)로 측정하였다. VCT로 예측된 전역 좌굴 하중을 좌굴 시험에서 측정된 좌굴 하중과 비교하여 비파괴적 전역 좌굴 하중 예측 기법을 검증하였다.

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.155-166
    • /
    • 2020
  • Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.

횡충돌 하중을 받는 비보강 강판의 구조거동에 대한 크기 효과 (Scale Effects on the Structural Behavior of Steel Unstiffened Plates Subjected to Lateral Collisions)

  • 조상래;박정열;송승욱;박상현
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.178-186
    • /
    • 2018
  • The scale effects on the permanent deformations and fractures of structures subjected to impact loadings have been aware by structural engineers for a long time. Experimental investigations have been performed with various structures to demonstrate the effects, but very few are directly related with marine structural elements. Furthermore, the causes of the scale effects have not clearly been answered yet. In this study, to quantify the scale effects on the permanent deflections, lateral collision tests were performed on steel unstiffened plates and the numerical analyses of the tested models were also conducted using a commercial package, Abaqus. After the substantiation of the numerical tool using the test results, a parametric study was carried out considering and neglecting the strain-rate hardening. Based upon the parametric study results, it may be concluded that the main cause of the scale effects on the permanent deflections of steel unstiffened plates subjected to lateral collision loads is the strain-rate effects.

FEA of the blast loading effect on ships hull

  • Hamdoon, Muhsin;Zamani, Nader;Das, Sreekanta
    • Ocean Systems Engineering
    • /
    • 제1권3호
    • /
    • pp.223-239
    • /
    • 2011
  • In combat operations, naval ships may be subjected to considerable air blast and underwater shock loads capable of causing severe structural damage. As the experimental study imposes great monetary and time cost, the numerical solution may provide a valuable alternative. This study emphasises on numerical analysis for optimization of stiffened and unstiffened plate's structural response subjected to air blast load. Linear and non linear finite element (FE) modeling and analysis was carried out and compared with existing experimental results. The obtained results reveal a good agreement between numerical and experimental observations. The presented FE models can eliminate confusion regarding parameters selection and FE operations processing, using commercial software available currently.

An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading

  • Choi, Byong Jeong;Han, Hong Soo
    • Steel and Composite Structures
    • /
    • 제9권6호
    • /
    • pp.519-534
    • /
    • 2009
  • This study intends to examine the characteristics of compressive behavior and conducts comparative analysis between normal compressive strength under existing equations (LRFD, ACI 318, EC 4) and experimental the maximum compressive strength from the compression experiment for the unstiffened steel plate-concrete structures. The six specimens were made to evaluate the constraining factor (${\xi}$) and width ratio (${\beta}$) effects subjected to the compressive monotonic loading. Based on this experiments, the following conclusions could be made: first, compressive behaviors of the specimens from the finite element analysis closely agreed with the ones from the actual experiments; second, the higher the width ratio (${\beta}$) was, the lower the ductility index (DI) was; and third, the test results showed the maximum compressive strength with a margin by 7% compared to the existing codes.