DOI QR코드

DOI QR Code

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Choung, Joonmo (Department of Naval Architecture and Ocean Engineering, Inha University)
  • Received : 2020.04.22
  • Accepted : 2020.04.29
  • Published : 2020.06.30

Abstract

Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.

Keywords

References

  1. Algarni, M., Choi, Y., & Bai, Y. (2017). A Unified Material Model for Multiaxial Ductile Fracture and Extremely Low Cycle Fatigue of Inconel 718. International Journal of Fatigue, 96, 162-177. https://doi.org/10.1016/j.ijfatigue.2016.11.033
  2. American Society for Testing and Materials (ASME). (2004). Standard Test Methods of Tension Testing of Metallic Materials (ASTM E8). American Society for Testing and Materials.
  3. Bai, Y., & Wierzbicki, T. (2008). A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. International Journal of Plasticity, 24(6), 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004
  4. Bai, Y., & Wierzbicki, T. (2010). Application of Extended Mohr-Coulomb Citerion to Ductile Fracture. International Journal of Fracture, 161(1), 1-20. https://doi.org/10.1007/s10704-009-9422-8
  5. Cerik, B.C., & Choung, J. (2020). On the prediction of ductile fracture in ship structures with shell elements at low temperatures. Thin-Walled Structures, 151, 106721. https://doi.org/10.1016/j.tws.2020.106721
  6. Cerik, B.C., Lee, K.., Park, S.J., & Choung, J. (2019a). Simulation of Ship Collision and Grounding Damage Using Hosford-Coulomb Fracture Model for Shell Elements. Ocean Engineering, 173, 415-432. https://doi.org/10.1016/j.oceaneng.2019.01.004
  7. Cerik, B.C., Ringsberg J.W., & Choung, J. (2019b). Revisiting MARSTRUCT Benchmark Study on Side-shell Collision with a Combined Localized Necking and Stress-state Dependent Ductile Fracture Model. Ocean Engineering, 187, 106173. https://doi.org/10.1016/j.oceaneng.2019.106173
  8. Cerik, B.C., Park, B., Park, S.J., & Choung, J. (2019c). Modeling, Testing and Calibration of Ductile Crack Formation in Grade DH36 Ship Plates. Marine Structures, 66, 27-43. https://doi.org/10.1016/j.marstruc.2019.03.003
  9. Choung, J., & Cho, S.R. (2008). Study on True Stress Correction from Tensile Tests. Journal of Mechanical Science and Technology, 22, 1039-1051. https://doi.org/10.1007/s12206-008-0302-3
  10. Choung, J., Park, S.J., & Kim, Y. (2015a). Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies. Journal of Ocean Engineering and Technology. 29(6), 445-453. https://doi.org/10.5574/KSOE.2015.29.6.445
  11. Choung, J., Park, S.J., & Kim, Y. (2015b). Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface. Journal of Ocean Engineering and Technology. 29(6), 454-462. https://doi.org/10.5574/KSOE.2015.29.6.454
  12. Cho, S.R., Park, J.Y., Song, S.U., & Park, S,H. (2018). Scale Effects on the Structural Behavior of Steel Unstiffened Plates Subjected to Lateral Collisions, Journal of the Society of Naval Architects of Korea, 55(2), 178-186. https://doi.org/10.3744/SNAK.2018.55.2.178
  13. Ehlers, S., Broekhuijsen, J., Alsos, H.S., Biehl, F., & Tabri, K. (2008). Simulating the collision response of ship side structures: A failure criteria benchmark study. International Shipbuilding Progress. 55(1), 127-144. https://doi.org/10.3233/ISP-2008-0042
  14. Johnson, G.R., & Cook, W.H. (1985). Fracture Characteristics of Three Metals Subjected to Various Strain, Strain Rates Temperatures and Pressures. Engineering Fracture Mechanics, 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  15. Mohr, D., & Marcadet, S. (2015). Micromechanically-motivated Phenomenological Hosford-coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialites. International Journal of Solids and Structures. 67-68, 40-55. https://doi.org/10.1016/j.ijsolstr.2015.02.024
  16. Min, D.K., & Cho, S.R. (2012). On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads. Journal of the Society Naval Architects of Korea, 49(4), 281-286. https://doi.org/10.3744/SNAK.2012.49.4.281
  17. Nho, I.S., Park, M.J., & Cho, Y.S. (2018). Preliminary Structural Design of Blast Hardened Bulkhead (The 2nd Report : Scantling Formula for Curtain Plate Type Blast Hardened Bulkhead). Journal of the Society Naval Architects of Korea, 55(5), 379-384. https://doi.org/10.3744/SNAK.2018.55.5.379
  18. Pack, K., & Mohr, D. (2017). Combined Necking & Fracture Model to Predict Ductile Failure with Shell Finite Elements. Engineering Fracture Mechanics, 182, 32-51. https://doi.org/10.1016/j.engfracmech.2017.06.025
  19. Park, S.J., Lee, K., & Choung, J. (2016). Punching Fracture Simulations of Circular Unstiffened Steel Plates Using Three-dimensional Fracture Surface. Journal of Ocean Engineering and Technology, 30(6), 474-483. https://doi.org/10.5574/KSOE.2016.30.6.474
  20. Park, S.J., Park, B., & Choung, J. (2017). Ductile fracture predictions of High Strength Steel (EH36) Using Linear and Non-Linear Damage Evolution Models. Journal of Ocean Engineering and Technology, 31(4), 288-298. https://doi.org/10.26748/KSOE.2017.08.31.4.288
  21. Park, S.J., Lee, K., Cerik B.C., Kim, Y., & Choung, J. (2019a). Ductile Fracture of a Marine Structural Steel Based on HC-DSSE Combined Fracture Strain Formulation. Journal of the Society of Naval Architects of Korea. 56(1), 82-93. https://doi.org/10.3744/SNAK.2019.56.1.082
  22. Park, S.J., Lee, K., Cerik B.C., & Choung, J. (2019b). Ductile Fracture Prediction of EH36 Grade Steel Based on Hosford-Coulomb Model. Ships and Offshore Structures, 14, 68-78. https://doi.org/10.1080/17445302.2019.1565300
  23. Park, S.J., Cerik B.C., & Choung, J. (2020). Comparative Study on Ductile Fracture Prediction of High-tensile Strength Marine Structural Steels. Ships and Offshore Structures. https://doi.org/10.1080/17445302.2020.1743552
  24. Ringsberg, J.W., Amdahl, J., Chen, B.Q., Cho, S.R., Ehlers, S., Hu, Z., ... Zhang, S. (2018). MARSTRUCT Benchmark Study on Nonlinear FE Simulation of an Experiment of an Indenter Impact with a Ship Side-shell Structure. Marine Structures, 59, 142-157. https://doi.org/10.1016/j.marstruc.2018.01.010
  25. Roth, C.C., & Mohr, D. (2016). Ductile Fracture Experiments with Locally Proportional Loading Histories. International Journal of Plasticity, 79, 328-354. https://doi.org/10.1016/j.ijplas.2015.08.004
  26. Xue, L. (2007). Damage Accumulation and Fracture Iinitiation in Uncracked Ductile Solids Subject to Triaxial Loading. International Journal of Solids and Structures, 44(16), 5163-5181. https://doi.org/10.1016/j.ijsolstr.2006.12.026