Browse > Article
http://dx.doi.org/10.26748/KSOE.2020.023

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures  

Park, Sung-Ju (Department of Naval Architecture and Ocean Engineering, Inha University)
Choung, Joonmo (Department of Naval Architecture and Ocean Engineering, Inha University)
Publication Information
Journal of Ocean Engineering and Technology / v.34, no.3, 2020 , pp. 155-166 More about this Journal
Abstract
Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.
Keywords
Ductile fracture; Punch test; Structural steel; Stress triaxiality; Lode angle; Hosford-Coulomb model; DSSE model;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Cerik, B.C., & Choung, J. (2020). On the prediction of ductile fracture in ship structures with shell elements at low temperatures. Thin-Walled Structures, 151, 106721. https://doi.org/10.1016/j.tws.2020.106721   DOI
2 Cerik, B.C., Lee, K.., Park, S.J., & Choung, J. (2019a). Simulation of Ship Collision and Grounding Damage Using Hosford-Coulomb Fracture Model for Shell Elements. Ocean Engineering, 173, 415-432. https://doi.org/10.1016/j.oceaneng.2019.01.004   DOI
3 Cerik, B.C., Ringsberg J.W., & Choung, J. (2019b). Revisiting MARSTRUCT Benchmark Study on Side-shell Collision with a Combined Localized Necking and Stress-state Dependent Ductile Fracture Model. Ocean Engineering, 187, 106173. https://doi.org/10.1016/j.oceaneng.2019.106173   DOI
4 Cerik, B.C., Park, B., Park, S.J., & Choung, J. (2019c). Modeling, Testing and Calibration of Ductile Crack Formation in Grade DH36 Ship Plates. Marine Structures, 66, 27-43. https://doi.org/10.1016/j.marstruc.2019.03.003   DOI
5 Choung, J., & Cho, S.R. (2008). Study on True Stress Correction from Tensile Tests. Journal of Mechanical Science and Technology, 22, 1039-1051. https://doi.org/10.1007/s12206-008-0302-3   DOI
6 Choung, J., Park, S.J., & Kim, Y. (2015a). Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies. Journal of Ocean Engineering and Technology. 29(6), 445-453. https://doi.org/10.5574/KSOE.2015.29.6.445   DOI
7 Choung, J., Park, S.J., & Kim, Y. (2015b). Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface. Journal of Ocean Engineering and Technology. 29(6), 454-462. https://doi.org/10.5574/KSOE.2015.29.6.454   DOI
8 Cho, S.R., Park, J.Y., Song, S.U., & Park, S,H. (2018). Scale Effects on the Structural Behavior of Steel Unstiffened Plates Subjected to Lateral Collisions, Journal of the Society of Naval Architects of Korea, 55(2), 178-186. https://doi.org/10.3744/SNAK.2018.55.2.178   DOI
9 Ehlers, S., Broekhuijsen, J., Alsos, H.S., Biehl, F., & Tabri, K. (2008). Simulating the collision response of ship side structures: A failure criteria benchmark study. International Shipbuilding Progress. 55(1), 127-144. https://doi.org/10.3233/ISP-2008-0042
10 Johnson, G.R., & Cook, W.H. (1985). Fracture Characteristics of Three Metals Subjected to Various Strain, Strain Rates Temperatures and Pressures. Engineering Fracture Mechanics, 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9   DOI
11 Mohr, D., & Marcadet, S. (2015). Micromechanically-motivated Phenomenological Hosford-coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialites. International Journal of Solids and Structures. 67-68, 40-55. https://doi.org/10.1016/j.ijsolstr.2015.02.024   DOI
12 Min, D.K., & Cho, S.R. (2012). On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads. Journal of the Society Naval Architects of Korea, 49(4), 281-286. https://doi.org/10.3744/SNAK.2012.49.4.281   DOI
13 Nho, I.S., Park, M.J., & Cho, Y.S. (2018). Preliminary Structural Design of Blast Hardened Bulkhead (The 2nd Report : Scantling Formula for Curtain Plate Type Blast Hardened Bulkhead). Journal of the Society Naval Architects of Korea, 55(5), 379-384. https://doi.org/10.3744/SNAK.2018.55.5.379   DOI
14 Pack, K., & Mohr, D. (2017). Combined Necking & Fracture Model to Predict Ductile Failure with Shell Finite Elements. Engineering Fracture Mechanics, 182, 32-51. https://doi.org/10.1016/j.engfracmech.2017.06.025   DOI
15 Park, S.J., Lee, K., Cerik B.C., & Choung, J. (2019b). Ductile Fracture Prediction of EH36 Grade Steel Based on Hosford-Coulomb Model. Ships and Offshore Structures, 14, 68-78. https://doi.org/10.1080/17445302.2019.1565300
16 Park, S.J., Lee, K., & Choung, J. (2016). Punching Fracture Simulations of Circular Unstiffened Steel Plates Using Three-dimensional Fracture Surface. Journal of Ocean Engineering and Technology, 30(6), 474-483. https://doi.org/10.5574/KSOE.2016.30.6.474   DOI
17 Park, S.J., Park, B., & Choung, J. (2017). Ductile fracture predictions of High Strength Steel (EH36) Using Linear and Non-Linear Damage Evolution Models. Journal of Ocean Engineering and Technology, 31(4), 288-298. https://doi.org/10.26748/KSOE.2017.08.31.4.288   DOI
18 Park, S.J., Lee, K., Cerik B.C., Kim, Y., & Choung, J. (2019a). Ductile Fracture of a Marine Structural Steel Based on HC-DSSE Combined Fracture Strain Formulation. Journal of the Society of Naval Architects of Korea. 56(1), 82-93. https://doi.org/10.3744/SNAK.2019.56.1.082   DOI
19 Park, S.J., Cerik B.C., & Choung, J. (2020). Comparative Study on Ductile Fracture Prediction of High-tensile Strength Marine Structural Steels. Ships and Offshore Structures. https://doi.org/10.1080/17445302.2020.1743552
20 Ringsberg, J.W., Amdahl, J., Chen, B.Q., Cho, S.R., Ehlers, S., Hu, Z., ... Zhang, S. (2018). MARSTRUCT Benchmark Study on Nonlinear FE Simulation of an Experiment of an Indenter Impact with a Ship Side-shell Structure. Marine Structures, 59, 142-157. https://doi.org/10.1016/j.marstruc.2018.01.010   DOI
21 Roth, C.C., & Mohr, D. (2016). Ductile Fracture Experiments with Locally Proportional Loading Histories. International Journal of Plasticity, 79, 328-354. https://doi.org/10.1016/j.ijplas.2015.08.004   DOI
22 Bai, Y., & Wierzbicki, T. (2010). Application of Extended Mohr-Coulomb Citerion to Ductile Fracture. International Journal of Fracture, 161(1), 1-20. https://doi.org/10.1007/s10704-009-9422-8   DOI
23 Xue, L. (2007). Damage Accumulation and Fracture Iinitiation in Uncracked Ductile Solids Subject to Triaxial Loading. International Journal of Solids and Structures, 44(16), 5163-5181. https://doi.org/10.1016/j.ijsolstr.2006.12.026   DOI
24 Algarni, M., Choi, Y., & Bai, Y. (2017). A Unified Material Model for Multiaxial Ductile Fracture and Extremely Low Cycle Fatigue of Inconel 718. International Journal of Fatigue, 96, 162-177. https://doi.org/10.1016/j.ijfatigue.2016.11.033   DOI
25 American Society for Testing and Materials (ASME). (2004). Standard Test Methods of Tension Testing of Metallic Materials (ASTM E8). American Society for Testing and Materials.
26 Bai, Y., & Wierzbicki, T. (2008). A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. International Journal of Plasticity, 24(6), 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004   DOI