• 제목/요약/키워드: unsteady simulation

검색결과 605건 처리시간 0.035초

상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발 (The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems)

  • 박재홍
    • 한국수자원학회논문집
    • /
    • 제40권4호
    • /
    • pp.325-334
    • /
    • 2007
  • 본 연구에서는 점진적인 유량 및 압력이 변화하는 상수관망에서 Rigid Water Column Theory를 이용하여 정상모형의 확장기간 모의해석보다 정확하고 수충격 해석보다는 계산비용 및 노력 측면에서 효율적으로 장시간 부정류 해석 모형을 개발하였다. 개발된 모형을 이용하여 실제관망에 대하여 24 시간 열 수요량을 고려한 부정류 해석 및 밸브폐쇄로 인한 수충격해석 모의에 적용하였고 해석 결과는 다음과 같다. 24 시간 일변화 모의의 경우에 수요량이 증가할 경우 모든 관로에서 압력감소가 나타났으며 수요량이 감소할 경우 압력증가가 나타났다. 그리고 일 수요량의 변화에 따라 나타난 절점에서의 유량 및 압력 변화폭은 각 절점마다 다르고 수요량과 유량의 변화양상이 반대로 나타나는 관로도 발생하고 있으며 KYPIPE2의 결과와 본 모형의 유량 및 압력차이도 발생하고 있어 상수관망의 동역학적 해석의 필요성이 대두되었다. 밸브폐쇄로 인한 수충격모의에 본 모형이 적용되었을 때 본 모형은 유체의 압축성을 무시함으로 인해 밸브 완전 폐쇄와 동시에 압력과 유량의 변화가 전 관망에 발생하였고 수충격모형은 유체의 탄성으로 인해 발생된 압력파의 도달시간이 필요함으로 압력과 유량변화가 지체되어 나타났으나 전체적인 변화양상 및 변화폭의 크기 등은 유사한 경향을 나타내어 본 모형의 적용성을 입증하였다. 본 연구에서 개발된 프로그램은 장기간 점진적인 관로 부정류를 비교적 정확하게 해석할 수 있을 것으로 판단되며 이를 이용하여 관로내 오염물의 확산해석, 수요량을 고려한 절점에서의 압력제어 및 누수저감, 장기간 관로내의 유량 및 압력 변화를 고려한 관망관리 등의 분야에서 효율적으로 이용될 수 있을 것으로 기대되었다.

초음속 유동장에서 기저 유동의 Detached Eddy Simulation (DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM)

  • 신재렬;원수희;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

초음속 유동장에서 기저 유동의 Detached Eddy Simulation (DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM)

  • 신재렬;원수희;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

비정상 다상유동의 효율적 수치모사를 위한 VOF가 적용된 Fractional Step 기법 (FRACTIONAL STEP METHOD COMBINED WITH VOLUME-OF-FLUID METHOD FOR EFFICIENT SIMULATION OF UNSTEADY MULTIPHASE FLOW)

  • 이경준;양경수;강창우
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.99-108
    • /
    • 2010
  • Fractional Step Methods(FSM) are popular in simulation of unsteady incompressible flow. In this study, we demonstrate that FSM, combined with a Volume-Of-Fluid method, can be further applied to simulation of multiphase flow. The interface between the fluids is constructed by the effective least squares volume-of-fluid interface reconstruction algorithm and advected by the velocity using the operator split advection algorithm. To verify our numerical methodology, our results are compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. The present FSM sheds light on accurate simulation of turbulent multiphase flow which is found in many engineering applications.

바닥복사 난방시스템의 에너지 유동특성에 관한 시뮬레이션 및 실험적 연구 (Simulation and Experimental Study for Energy Flow Dynamics of Floor Radiant Heating System)

  • 안병천;송재엽;이태원;김용기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.927-932
    • /
    • 2006
  • A simulation and experimental study for energy flow dynamics of floor radiant heating system were performed. The study was done under both environmental chamber and a house with several rooms. The unsteady energy analysis method using equivalent R-C circuit and radiation heat transfer analysis of enclosure analysis method with simple structured rooms were used for computer simulation. Also, first order dynamics with time delay in analyzing the return water was considered. The results of temperature changes of the simulation study are good fit with the ones of experimental one.

  • PDF

Large Eddy Simulation of the Dynamic Response of an Inducer to Flow Rate Fluctuations

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Ueda, Tatsuya;Yamanishi, Nobuhiro;Kato, Chisachi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.431-438
    • /
    • 2009
  • A Large Eddy Simulation (LES) of the flow in an inducer is carried out under flow rate oscillations. The present study focuses on the dynamic response of the backflow and the unsteady pressure performance to the flow rate fluctuations under non-cavitation conditions. The amplitude of angular momentum fluctuation evaluated by LES is larger than that evaluated by RANS. However, the phase delay of backflow is nearly the same as RANS calculation. The pressure performance curve exhibits a closed curve caused by the inertia effect associated with the flow rate fluctuations. Compared with simplified one dimensional evaluation of the inertia component, the component obtained by LES is smaller. The negative slope of averaged performance curve becomes larger under unsteady conditions. From the conservations of angular momentum and energy, an expression useful for the evaluation of unsteady pressure rise was obtained. The examination of each term of this expression show that the apparent decrease of inertia effects is caused by the response delay of Euler's head and that the increase of negative slope is caused by the delay of inertial term associated with the delay of backflow response. These results are qualitatively confirmed by experiments.

복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석 (Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels)

  • 홍성호;신종근;최영돈
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

New Bubble Size Distribution Model for Cryogenic High-speed Cavitating Flow

  • Ito, Yutaka;Tomitaka, Kazuhiro;Nagasaki, Takao
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.700-710
    • /
    • 2008
  • A Bubble size distribution model has been developed for the numerical simulation of cryogenic high-speed cavitating flow of the turbo-pumps in the liquid fuel rocket engine. The new model is based on the previous one proposed by the authors, in which the bubble number density was solved as a function of bubble size at each grid point of the calculation domain by means of Eulerian framework with respect to the bubble size coordinate. In the previous model, the growth/decay of bubbles due to pressure difference between bubble and liquid was solved exactly based on Rayleigh-Plesset equation. However, the unsteady heat transfer between liquid and bubble, which controls the evaporation/condensation rate, was approximated by a theoretical solution of unsteady heat conduction under a constant temperature difference. In the present study, the unsteady temperature field in the liquid around a bubble is also solved exactly in order to establish an accurate and efficient numerical simulation code for cavitating flows. The growth/decay of a single bubble and growth of bubbles with nucleation were successfully simulated by the proposed model.

  • PDF

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

LSTM-based aerodynamic force modeling for unsteady flows around structures

  • Shijie Liu;Zhen Zhang;Xue Zhou;Qingkuan Liu
    • Wind and Structures
    • /
    • 제38권2호
    • /
    • pp.147-160
    • /
    • 2024
  • The aerodynamic force is a significant component that influences the stability and safety of structures. It has unstable properties and depends on computer precision, making its long-term prediction challenging. Accurately estimating the aerodynamic traits of structures is critical for structural design and vibration control. This paper establishes an unsteady aerodynamic time series prediction model using Long Short-Term Memory (LSTM) network. The unsteady aerodynamic force under varied Reynolds number and angles of attack is predicted by the LSTM model. The input of the model is the aerodynamic coefficients of the 1 to n sample points and output is the aerodynamic coefficients of the n+1 sample point. The model is predicted by interpolation and extrapolation utilizing Unsteady Reynolds-average Navier-Stokes (URANS) simulation data of flow around a circular cylinder, square cylinder and airfoil. The results illustrate that the trajectories of the LSTM prediction results and URANS outcomes are largely consistent with time. The mean relative error between the forecast results and the original results is less than 6%. Therefore, our technique has a prospective application in unsteady aerodynamic force prediction of structures and can give technical assistance for engineering applications.