• Title/Summary/Keyword: unsteady flow

Search Result 1,862, Processing Time 0.023 seconds

RESEARCH ON THE WAVELET METHOD FOR THE IMPROVEMENT OF COMPUTATIONAL EFFICIENCY OF TWO DIMENSIONAL FLOW PROBLEMS (2차원 비정상 유동 해석 효율 향상을 위한 Wavelet 기법 응용 연구)

  • Kang, H.M.;Hong, S.W.;Jeong, J.H.;Kim, K.H.;Lee, D.H.;Lee, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.42-49
    • /
    • 2008
  • A wavelet method is presented in order to improve the computational efficiency of two dimensional unsteady flow problems while maintaining the order of accuracy of conventional CFD schemes. First, by using the interpolating wavelet transformation including decomposition and thresholding, an adaptive dataset to a solution is constructed. Then, inviscid and viscous fluxes are calculated only at the points within an adaptive dataset, which enhances the computational efficiency. Second, thresholding step is modified to maintain the spatial and temporal accuracy of conventional CFD schemes automatically by selecting the threshold value between user-defined value and the magnitude of spatial or temporal truncation error. The wavelet method suggested in this study is successfully applied to various unsteady flow problems and it is shown that the computational efficiency is enhanced with maintaining the computational accuracy of CFD schemes.

  • PDF

Numerical Simulation of Locally-Forced Turbulent Boundary Layer (국소교란에 의한 난류 경계층 유동의 수치해석)

  • Ri, Gwang-Hun;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.96-107
    • /
    • 2001
  • An unsteady numerical simulation was performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer. The local forcing was given to the boundary layer flow by means of sinusoidally oscillating jet. A version of the unsteady $\kappa$-$\xi$-f(sub)u model (Rhee and Sung 2000) was employed. The Reynolds number based on the momentum thickness was about Re(sub)$\theta$=1700. The forcing frequency was varied in the range 0.011$\leq$f(sup)+$\leq$0.044 with a fixed forcing amplitude A(sub)o=0.4. The predicted results were compared and validated with the experimental data. It was shown that the unsteady locally-forced boundary layer flow is predicted well by the $\kappa$-$\xi$-f(sub)u model. The effect of the pitch angle of local forcing on the reduction of skin friction was also examined.

RESEARCH ON THE WAVELET METHOD FOR THE IMPROVEMENT OF COMPUTATIONAL EFFICIENCY OF TWO DIMENSIONAL FLOW PROBLEMS (2차원 비정상 유동 해석 효율 향상을 위한 Wavelet 기법 응용 연구)

  • Kang, H.M.;Hong, S.W.;Jeong, J.H.;Kim, K.H.;Lee, D.H.;Lee, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.42-49
    • /
    • 2008
  • A wavelet method is presented in order to improve the computational efficiency of two dimensional unsteady flow problems while maintaining the order of accuracy of conventional CFD schemes. First, by using the interpolating wavelet transformation including decomposition and thresholding, an adaptive dataset to a solution is constructed. Then, inviscid and viscous fluxes are calculated only at the points within an adaptive dataset, which enhances the computational efficiency. Second, thresholding step is modified to maintain the spatial and temporal accuracy of conventional CFD schemes automatically by selecting the threshold value between user-defined value and the magnitude of spatial or temporal truncation error. The wavelet method suggested in this study is successfully applied to various unsteady flow problems and it is shown that the computational efficiency is enhanced with maintaining the computational accuracy of CFD schemes.

  • PDF

A Numerical Study on the Generation of Aeroacoustic Sound from Sirocco Fans (시로코 홴의 공력소음 발생에 관한 수치적 연구)

  • 전완호;백승조;김창준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • Sirocco fans are widely used in HVAC and air conditioning systems, and the noise generated by these machines causes one of the most serious problems. In general, the sirocco fan noise is often dominated by tones at BPF(blade passage frequency) and broadband noise. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a sirocco fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson\`s method is used to predict the acoustic source. Reasonable results are obtained not only fur the tonal noise but also far the amplitudes of the broadband noise. Acoustic pressure is proportional to (Ω)2.3, which is the similar value with the measured data.

Unsteady Wet Steam Flow Measurements in a Low-Pressure Test Steam Turbine

  • Duan, Chongfei;Ishibashi, Koji;Senoo, Shigeki;Bosdas, Ilias;Mansour, Michel;Kalfas, Anestis I.;Abhari, Reza S.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • An experimental study is conducted for unsteady wet steam flow in a four-stage low-pressure test steam turbine. The measurements are carried out at outlets of the last two stages by using a newly developed fast response aerodynamic probe. This FRAP-HTH probe (Fast Response Aerodynamic Probe - High Temperature Heated) has a miniature high-power cartridge heater with an active control system to heat the probe tip, allowing it to be applied to wet steam measurements. The phase-locked average results obtained with a sampling frequency of 200 kHz clarify the flow characteristics, such as the blade wakes and secondary vortexes, downstream from the individual rotational blades in the wet steam environment.

A Numerical Method for Dispersion of Unsteady Horizontal Line Source in Turbulent Shear Flow (난류전단 흐름에서의 비정상 수평 선오염원의 확산에 관한 수치해법)

  • 전경수
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.187-198
    • /
    • 1996
  • A numerical model for unsteady dispersion of horizontal line source in turbulent shear flow is developed. A fractional step finite difference method is used which splits the unsteady two-dimensional advective diffusion equation into the longitudinal advection and the vertical diffusion equations, and solves them alternately for half time intervals by the Holly-Preissmann scheme and the Crank-Nicholson scheme, respectively. The developed numerical model is verified using a semi-analytic solution for steady dispersion in turbulent shear flow. Dispersion of an instantaneous plane source in turbulent shear flow is analyzed using the model. The degree of mixing at the same dimensionless time is almost the same regardless of the friction factor, and the travel distance required to reach a certain degree of mixing is inversely proportional to the square root of the friction factor.

  • PDF

Unsteady Single-Phase Natural Circulation Flow Mixing Prediction Using CATHARE Three-Dimensional Capabilities

  • Salah, Anis Bousbia;Vlassenbroeck, Jacques
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.466-475
    • /
    • 2017
  • Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal-hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

Efficient Prediction of Broadband Noise of a Centrifugal Fan Using U-FRPM Technique (U-FRPM 기법을 이용한 원심팬 광대역소음의 효율적 예측)

  • Heo, Seung;Cheong, Chulung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Recently, a lot of studies have been made about the methods used to generate turbulent velocity fields stochastically in order to effectively predict broadband flow noise. Among them, the FRPM (Fast Random Particle Mesh) method which generates turbulence with specific statistical properties using turbulence kinetic energy and dissipation obtained from the steady solution of the RANS (Reynolds Averaged Navier-Stokes) equations has been successfully applied. However, the FRPM method cannot be applied to the flow noise problems involving intrinsic unsteady characteristics such as centrifugal fan. In this paper, to effectively predict the broadband noise generated by centrifugal fan, U-FRPM (unsteady FRPM) method is developed by extending the FRPM method to be combined with the unsteady numerical solutions of the unsteady RANS equations to generate the turbulence considered as broadband noise sources. Firstly, an unsteady flow field is obtained from the unsteady RANS equations through CFD (Computational Fluid Dynamics). Then, noise sources are generated using the U-FRPM method combined with acoustic analogy. Finally, the linear propagation model which is realized through BEM (Boundary Element Method) is combined with the generated sources to predict broadband noise at the listeners' position. The proposed technique is validated to compare its prediction result with the measured data.

Computational Study of Unsteady Three Dimensional Wing in Pitching Motion Utilizing Linear Vortex Panel Method (VORTEX 패널법을 이용한 비정상 3차원 날개의 피칭 운동에 관한 연구)

  • Jeong,Bong-Gu;Cho,Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, steady/unsteady aerodynamic characteristic for three dimensional symmetric wing was investigated numerically using Vortex Panel Method. This program utilized linearly varying vortices in x and y directions distributed on the wing surface and was applied to the incompressible potential. flow around a three dimensional wing Separation and deformation of the wake are not considered. The comparison between NACA Airfoil Data and the computed results showed excellent agreement. πus method was applied to unsteady wings undergoing both sudden pitch-up and constant rate pitching motion. In the unsteady flow analysis, a formation and a time-dependent locations of Starting Vortices are considered and the effect of Starting Vortices on aerodynamic characteristic of the wing was calculated. The present method can be extended to apply for more complicated cases such as pitching, flapping and rotating wing analysis.

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.