• Title/Summary/Keyword: unscented Kalman filter (UKF)

Search Result 87, Processing Time 0.03 seconds

Parameter Estimation for Multipath Error in GPS Dual Frequency Carrier Phase Measurements Using Unscented Kalman Filters

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Kang, Tea-Sam;Jee, Gyu-In;Kim, Jeong-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.388-396
    • /
    • 2007
  • This paper describes a multipath estimation method for Global Positioning System (GPS) dual frequency carrier phase measurements. Multipath is a major error source in high precision GPS applications, i.e., carrier phase measurements for precise positioning and attitude determinations. In order to estimate and remove multipath at carrier phase measurements, an array GPS antenna system has been used. The known geometry between the antennas is used to estimate multipath parameters. Dual frequency carrier phase measurements increase the redundancy of measurements, so it can reduce the number of antennas. The unscented Kalman filter (UKF) is recently applied to many areas to overcome some of the limitations of the extended Kalman filter (EKF) such as weakness to severe nonlinearity. This paper uses the UKF for estimating multipath parameters. A series of simulations were performed with GPS antenna arrays located on a straight line with one reflector. The geometry information of the antenna array reduces the number of estimated multipath parameters from four to three. Both the EKF and the UKF are used as estimation algorithms and the results of the EKF and the UKF are compared. When the initial parameters are far from true parameters, the UKF shows better performance than the EKF.

A Performance Comparison of Nonlinear Kalman Filtering Based Terrain Referenced Navigation (비선형 칼만 필터 기반의 지형참조항법 성능 비교)

  • Mok, Sung-Hoon;Bang, Hyo-Choong;Yu, Myeong-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.108-117
    • /
    • 2012
  • This paper focuses on a performance analysis of TRN among various nonlinear filtering methods. In a TRN research, extended Kalman filter(EKF) is a basic estimation algorithm. In this paper, iterated EKF(IEKF), EKF with stochastic linearization(SL), and unscented Kalman filter(UKF) algorithms are introduced to compare navigation performance with original EKF. In addition to introduced sequential filters, bank of Kalman filters method, which is one of the batch method, is also presented. Finally, by simulating an artificial aircraft mission, EKF with SL was chosen as the most consistent filter in the introduced sequential filters. Also, results suggested that the bank of Kalman filters can be alternative for TRN, when a fast convergence of navigation solution is needed.

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

UKF Localization of a Mobile Robot in an Indoor Environment and Performance Evaluation (실내 이동로봇의 UKF 위치 추정 및 성능 평가)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • This paper reports an unscented Kalman filter approach for localization of a mobile robot in an indoor environment. The method proposes a new model of measurement uncertainty which adjusts the error covariance according to the measured distance. The method also uses non-zero off diagonal values in error covariance matrices of motion uncertainty and measurement uncertainty. The method is tested through experiments in an indoor environment of 100*40 m working space using a differential drive robot which uses Laser range finder as an exteroceptive sensor. The results compare the localization performance of the proposed method with the conventional method which doesn't use adaptive measurement uncertainty model. Also, the experiment verifies the improvement due to non-zero off diagonal elements in covariance matrices. This paper contributes to implementing and evaluating a practical UKF approach for mobile robot localization.

Estimated Position of Sea-Surface Beacon Using DWT/UKF (DWT/UKF를 이용한 수면 BEACON의 위치추정)

  • Yoon, Ba-Da;Yoon, Ha-Neul;Choi, Sung-He;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • A location estimation algorithm based on the sea-surface beacon is proposed in this paper. The beacon is utilized to provide ultrasonic signals to the underwater vehicles around the beacon to estimate precise position of underwater vehicles (ROV, AUV, Diver robot), which is named as USBL (Ultra Short Baseline) system. It utilizes GPS and INS data for estimating its position and adopts DWT (Discrete Wavelet Transform) de-noising filter and UKF (Unscented KALMAN Filter) elaborating the position estimation. The beacon system aims at estimating the precise position of underwater vehicle by using USBL to receive the tracking signals. The most important one for the precise position estimation of underwater vehicle is estimating the position of the beacon system precisely. Since the beacon is on the sea-waves, the received GPS signals are noisy and unstable most of times. Therefore, the INS data (gyroscope sensor, accelerometer, magnetic compass) are obtained at the beacon on the sea-surface to compensate for the inaccuracy of the GPS data. The noises in the acceleration data from INS data are reduced by using DWT de-noising filter in this research. Finally the UKF localization system is proposed in this paper and the system performance is verified by real experiments.

Accurate State of Charge Estimation of LiFePO4 Battery Based on the Unscented Kalman Filter and the Particle Filter (언센티드 칼만 필터와 파티클 필터에 기반한 리튬 인산철 배터리의 정확한 충전 상태 추정)

  • Nguyen, Thanh-Tung;Awan, Mudassir Ibrahim;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.126-127
    • /
    • 2017
  • An accurate State Of Charge (SOC) estimation of battery is the most important technique for Electric Vehicles (EVs) and Energy Storage Systems (ESSs). In this paper a new integrated Unscented Kalman Filter-Particle Filter (UKF-PF) is employed to estimate the SOC of a $LiFePO_4$ battery cell and a significant improvement is obtained as compared to the other methods. The parameters of the battery is modeled by the second order Auto Regressive eXogenous (ARX) model and estimated by using Recursive Least Square (RLS) method to calculate value of each element in the model. The proposed algorithm is established by combining a parameter identification technique using RLS method with ARX model and an SOC estimation technique using UKF-PF.

  • PDF

State-of-charge Estimation for Lithium-ion Battery using a Combined Method

  • Li, Guidan;Peng, Kai;Li, Bin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • An accurate state-of-charge (SOC) estimation ensures the reliable and efficient operation of a lithium-ion battery management system. On the basis of a combined electrochemical model, this study adopts the forgetting factor least squares algorithm to identify battery parameters and eliminate the influence of test conditions. Then, it implements online SOC estimation with high accuracy and low run time by utilizing the low computational complexity of the unscented Kalman filter (UKF) and the rapid convergence of a particle filter (PF). The PF algorithm is adopted to decrease convergence time when the initial error is large; otherwise, the UKF algorithm is used to approximate the actual SOC with low computational complexity. The effect of the number of sampling particles in the PF is also evaluated. Finally, experimental results are used to verify the superiority of the combined method over other individual algorithms.

차량의 자동주행을 위한 목표물 추적 알고리듬: AIMM-UKF

  • 김용식;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.166-166
    • /
    • 2004
  • 운전자 보조시스템에는 적응순항제어 (adaptive cruise control), 차선변경 (lane change), 충돌경고 (collision warning), 충돌회피 (collision avoidance), 및 자동주차 (automatic parking) 등이 있다. 이런 운전자 보조시스템은 어떤 목적을 가지고 있다. 운전자의 부담을 줄이고 안전을 위하여 차량의 주행방향에 있는 장애물이나 차량을 감지하여 차량간의 안전거리론 유지하고 자동차가 일정 속도를 유지하도록 한다. 운전자 보조시스템의 효율은 센서들로부터 얻어진 정보의 해석에 달려있다.(중략)

  • PDF

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF