• Title/Summary/Keyword: unmanned aircraft system

Search Result 256, Processing Time 0.027 seconds

Surge Control of Small Turbojet Engines with Fuzzy Inference Method (소형 터보제트 엔진의 서지 제어를 위한 퍼지추론 기법)

  • Jie, Min-Seok;Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • The surge control system in unmanned turbojet engine must be capable of accounting uncertainties from engine transient conditions, random fluctuations of key parameters such as air pressure and fuel flow and engine modeling errors. In this paper, taking into consideration of its effectiveness as well as system stability, a fuzzy PI controller is proposed. The role of the fuzzy PI controller is to stabilize the unmanned aircraft upon occurring unexpected engine surge. The proposed control scheme is proved by computer simulation using a linear engine model. The simulation results on the state space model of a small turbojet engine illustrate the proposed control system achieves the desired performance.

  • PDF

Ground Vehicle and Drone Collaborative Delivery Planning using Genetic Algorithm

  • Song, Kyowon;Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Global e-commerce and delivery companies are actively pursuing last-mile delivery service using drones, and various delivery schedule planning studies have been conducted. In this study, separate individual route networks were constructed to reflect drone route constraints such as prohibited airspace and truck route constraints such as rivers, which previous studies did not incorporate. The A* algorithm was used to calculate the shortest path distance matrix between the starting point and destinations. In addition, we proposed an optimal delivery schedule plan using genetic algorithms and applied it to compare the efficiency with that of vehicle-only delivery.

Integrated Navigation and Sense & Avoid Systems for Micro Aerial Vehicles

  • Vorsmann, P.;Winkler, S.;Park, J.B.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.145-150
    • /
    • 2006
  • The paper deals with integrated navigation and sense & avoid systems for small unmanned aerial vehicles (UAV). First an introduction to the current UAV activities of the institute is given. It is followed by an overview about the integrated navigation system developed for small UAVs. The system is based on a tightly-coupled GPS/INS architecture. But instead of using delta-ranges, time-differenced carrier phases are used to aid the INS. Finally, results from navigation filter validation in flight tests are presented. After that an overview about sense and avoid strategies for application in small unmanned aircraft is given. From this a guideline for developing such a system for the institute's UAVs is presented.

  • PDF

On an Air-To-Sea Guided Bomb

  • Takano, Hiroyuki;Baba, Yoriaki;Takao, Kichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.462-467
    • /
    • 1993
  • Even nowadays ships on the sea are important strategic base for aircraft and missiles. Thus we have been studying an unmanned attack system against ships recently. We experienced severa problems when this system was simulated on the computer. In this paper, problems and solutions of an Air-To-Sea Guided Bomb for this system are presented.

  • PDF

Drone Sound Identification and Classification by Harmonic Line Association Based Feature Vector Extraction (Harmonic Line Association 기반 특징벡터 추출에 의한 드론 음향 식별 및 분류)

  • Jeong, HyoungChan;Lim, Wonho;He, YuJing;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.604-611
    • /
    • 2016
  • Drone, which refers to unmanned aerial vehicles (UAV), industries are improving rapidly and exceeding existing level of remote controlled aircraft models. Also, they are applying automation and cloud network technology. Recently, the ability of drones can bring serious threats to public safety such as explosives and unmanned aircraft carrying hazardous materials. On the purpose of reducing these kinds of threats, it is necessary to detect these illegal drones, using acoustic feature extraction and classifying technology. In this paper, we introduce sound feature vector extraction method by harmonic feature extraction method (HLA). Feature vector extraction method based on HLA make it possible to distinguish drone sound, extracting features of sound data. In order to assess the performance of distinguishing sounds which exists in outdoor environment, we analyzed various sounds of things and real drones, and classified sounds of drone and others as simulation of each sound source.

Research of a Development Plan on the Integrated Weapon System Database based on Integrated Operation and Management System for the Aircraft Development Management (항공기 체계운영관리시스템 기반의 통합무기체계데이터베이스 발전 방안 연구)

  • Chung, Joon-Young;Kim, Cheon-Youn;Kim, Jong-Jin;Lee, Sang-Bum
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.269-276
    • /
    • 2007
  • National defense research and development is trying to develop the weapon system to satisfy users' requirements at minimum cost, high quality and the shortest period. Under integrated database computer environments, development processes and tools have been developed to implement system engineering and concurrent engineering systematically. In the aerospace defense weapon system, the fixed wing development department has developed and operated the integrated operation and management information system based on web technology to manage efficiently the technical information generated by the R&D process. When this system was applied to the existing R&D project for the aircraft weapon system, it proved and verified its efficiency. In this paper, we describe the future development plan of an integrated R&D framework and an integrated weapon system database based on the integrated operation and management information system which are able to centrol the technical information of KF-X, UAV(Unmanned Aerial Vehicles) and UCAV(Unmanned Combat Aerial Vehicles) programs. We also describe an interoperability and integration plan with WISEMAN which will be operated soon in our research Institute.

  • PDF

A Performance Analysis of 60 Horsepower Vertical Mounted Gasoline Engine Applied to Multi-copter of Unmanned Aircraft Vehicle (무인 멀티콥터에 적용된 60마력급 직립형 가솔린 엔진의 성능 분석)

  • RYUNKYUNG KIM;KYUNGWAN KO;SUNGGI KWON;GYECHOON PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.758-766
    • /
    • 2023
  • Multi-copter of unmanned aerial vehicle (UAV) was initially developed as strategic technology in the only military field, but it is developing into an industrial field with a wide range of applications in the civil sector based on the development and convergence of aviation technology and information and communication technology. Currently, the degree of utilization of multi-copter is increasing in various industries for the purpose of performing classic tactical missions, logistics transportation, farm management, internet supply, video filming, weather management, life-saving, etc, and active technology development responding to market demand. Existing commercial multi-copter mainly use an electric energy propulsion system consisting of an electric battery and a brushless direct current (BLDC) motor. It is the limitations for usage in the flying time (up to 20 minutes) and payload (less than 20 kg). this study aims to overcome these limitations and expand the commercialization of engine-powered multi-copter of UAV in various industries in the futures.

Realization of Aircraft Takeoff Systems Based on Voice Instructions (음성지시 기반 항공기 이륙 시스템의 구현)

  • Yang, Chung-Il;Jun, Byung-Kyu;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.559-566
    • /
    • 2008
  • In this paper, we propose a voice instruction-based takeoff system for aircraft including unmanned aerial vehicle (UAV). The system consists of voice recognition (VR), flight state checking and instruction (command) execution. Employing VR technology, the proposed takeoff system can provide simplified and more reliable takeoff procedures to pilots. By virtue of the VR-based system it is expected that human errors during takeoff phase can be reduced and further navigation safety can be improved.

  • PDF

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.

An Obstacle Avoidance Technique of Quadrotor Using Immune Algorithm (면역 알고리즘을 이용한 쿼드로터 장애물회피 기술)

  • Son, Byung-Rak;Han, Chang-Seup;Lee, Hyun;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.269-276
    • /
    • 2014
  • In recent, autonomous navigation techniques to avoid obstacles have been studied by using unmanned aircraft vehicles(UAVs) since the increment of UAV's interest and utilization. Particularly, autonomous navigation based UAVs are utilized in several areas such as military, police, media, and so on. However, there are still some problems to avoid obstacle when UVAs perform autonomous navigation. For instance, the UAV can not forward in the corner of corridors even though it utilizes the improved vanish point algorithm that makes an autonomous navigation system. Therefore, in this paper, we propose an obstacle avoidance technique based on immune algorithm for autonomous navigation of Quadrotor. The proposed algorithm is consisted of two steps such as 1) single color discrimination and 2) multiple color discrimination. According to the result of experiments, we can solve the previous problem of the improved vanish point algorithm and improve the performance of autonomous navigation of Quadrotor.