
RReesseeaarrcchh  PPaappeerr 

Journal of Aerospace System Engineering
Vol.14, No.6, pp.1-9 (2020) 

EISSN 2508-7150
http://dx.doi.org/10.20910/JASE.2020.14.6.1

 

 

Ground Vehicle and Drone Collaborative Delivery Planning using Genetic 
Algorithm 

 

Kyowon Song1,† and Jung-Ho Moon2

1Civil & Environmental Engineering, Korea Advanced Institute of Science and Technology 
2Unmanned Aircraft System Engineering, Cheongju University

Abstract 

  Global e-commerce and delivery companies are actively pursuing last-mile delivery service using drones, and 
various delivery schedule planning studies have been conducted. In this study, separate individual route networks were 
constructed to reflect drone route constraints such as prohibited airspace and truck route constraints such as rivers,
which previous studies did not incorporate. The A* algorithm was used to calculate the shortest path distance matrix 
between the starting point and destinations. In addition, we proposed an optimal delivery schedule plan using genetic 
algorithms and applied it to compare the efficiency with that of vehicle-only delivery.
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11..  IInnttrroodduuccttiioonn  
 

  In recent years, numerous companies have put 

extensive efforts into developing a more efficient 

delivery method following the rapid development of 

the e-commerce industry [1]. Global e-commerce 

and delivery companies including Amazon, Alibaba, 

Google, and DHL are actively promoting the use of 

drone delivery services, and they have already 

demonstrated promising results with successful trial 

deliveries. At the 2019 Amazon re:MARS event held 

in June 2019 in Las Vegas, Amazon unveiled its in-

house built drones that can carry packages under 5 

lbs (approximately 2.3 kg) and proposed a plan to 

deliver packages to customers in less than 30 min 

in the coming months. Furthermore, the United 

Parcel Service, an American logistics giant, 

received approval from the Federal Aviation 

Administration for the first time in the industry in 

October 2019 to deliver packages weighing less 

than 55 lbs (approximately 25 kg) using drones. As 

such, drone deliveries are quickly becoming a 

reality. Drones are predicted to fly in urban areas in 

the coming years, with the development of obstacle 

recognition and avoidance and automatic take-off 

and landing technologies [2,3]. The primary reason 

why many companies are actively developing 

drone-based delivery systems is because drones 

are not affected by traffic congestion, thereby 

providing shorter delivery times and lower logistics 

cost per km compared to those of truck-based 

deliveries [4].  

  Studies on delivery system route planning that 

link vehicles and drones have been conducted both 

domestically and internationally to reduce delivery 

times while minimizing the logistics costs. Most 

studies have been conducted to transform or 

develop systems based on the traveling salesman 

problem (TSP).  

  The TSP considering drones was first presented 

by Murray and Chu (2015). They proposed a flying 

sidekick TSP (FSTSP) algorithm that employs 

drones and trucks to collaboratively deliver 

packages to customers and a parallel drone 

scheduling TSP algorithm that employs drones and 

trucks to deliver packages separately. In their study, 

mixed-integer linear programming was applied to 

minimize the delivery time in the objective function, 
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and a heuristic technique was used for the actual 

problem-solving because the computational 

complexity was nondeterministic polynomial-time 

(NP)-hard [5].  

  Agatz et al. (2015) proposed the traveling 

salesman problem with a drone algorithm. While this 

solution is similar to that of the FSTSP algorithm, it 

achieved higher delivery efficiency by adding 

revisiting conditions for the previously visited 

delivery nodes, enabling drone delivery even when 

the truck is on its way back to the warehouse [1]. 

Ha et al. (2015) proposed the cluster first-route 

second heuristic method, which enables more 

efficient delivery schedule planning by first 

selecting the route combination of the truck and 

drone deliveries and then finds the optimal truck 

routes [6]. In addition to the objective of minimizing 

delivery times, studies have been conducted on 

delivery schedule planning that consider factors 

affecting delivery cost. Mathew et al. (2015) and 

Dorling (2017) attempted to reduce fuel 

consumption [7,8], and Ha et al. (2018) studied the 

waiting time for the location synchronization of 

trucks and drones to minimize the overall logistics 

cost [4]. 

  To derive the travel times of drones and trucks, 

the existing studies simply divided the distance 

between the starting and destination points by the 

average moving speed of the trucks and drones. 

While certain studies attempted to use the 

Euclidean distance method for the drone distances 

and the Manhattan distance method for the truck 

distances [4,5,9,10], there were limitations to 

reflecting the characteristics of the actual road 

network and route. Furthermore, the studies failed 

to reflect the areas that are unavailable for drone 

delivery, such as prohibited airspace, or situations 

requiring drone detours. 

To overcome the limitations of existing studies, this 

study constructed separate delivery route networks 

for trucks and drones, searched for the optimal 

delivery plan that reflects truck movement 

constraints, such as rivers and mountains, and 

drone movement constraints, such as prohibited 

airspace, and then compared the efficiencies of the 

drone and vehicle-based delivery methods. 

 

22..  MMeetthhoodd  aanndd  EExxppeerriimmeenntt  
 

22..11  PPrroobblleemm  ddeeffiinniittiioonn  
  This study assumed a random delivery situation 

by presuming the drone and truck environments and 

movement constraints. The study searched for a 

delivery plan solution through delivery route 

optimization. Fig. 1 illustrates the situation of the 

assumed problem. The problem situation requires 

delivering packages to 10 fixed delivery 

destinations in a virtual 100×100 size grid site with 

a river and prohibited airspace to induce drone no-

fly zone and road network disconnection constraints. 

Truck movement occurs on the uniform grid of the 

road network. 

  For delivery using a truck and a drone, both 

vehicles are designed to begin at the same position 

and collaborate to deliver the packages. It is 

assumed that the drone only delivers one package 

at a time in consideration of its limited payload and 

loading and unloading apparatus. Thus, each time 

the drone completes a delivery, it must return to the 

truck to charge its battery or to load a new package 

for delivery. 

  The delivery depot where delivery starts and 

ends is located at the center of the site. The small 

dots in Fig. 1 indicate delivery destinations, with 

Destination 9 located inside the prohibited airspace 

where drone delivery is unavailable. While the 

prohibited airspace is typically configured based on 

the radius around a certain facility or area, in this 

study, it was configured using a rectangle 

considering the grid structure road network for 

calculation convenience. When searching for a 

delivery route, the drone can fly over the river 

region during package delivery, while the truck can 

only complete deliveries through the established 

road network, requiring it to use the bridge 

constructed in the middle of the river. Moreover, 

although factors such as the moving speed of both 

vehicles and the drone remaining flight time should 

be applied using actual values to conduct a more 

realistic experiment, this study used dimensionless 

time and distance units for simplified calculation and 

performance comparison as the scope of the study 

was limited to the relative comparison of delivery 

planning optimization. The conditions assumed in 
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this study are as follows. 

   1) The drone can travel both along the grid and 

diagonally. 

   2) The drone vertical takeoff and landing times 

are not considered. 

   3) For the drone, only the distance traveled is 

considered and not flight time. 

   4) One truck and one drone are operated. 

   5) Both the truck and drone travel at a constant 

speed. 

   6) Drone return only occurs at the delivery 

destination node. 

   7) The truck does not travel solely to reunite 

with the drone. 

 

Fig. 1 Delivery map with constraints. 
 

22..22  SShhoorrtteesstt  ppaatthh  sseeaarrcchh 
The shortest distances between the delivery 

depot and delivery destinations are required to 

derive the optimal delivery route plan. The shortest 

path was searched for using the A* algorithm, and 

the shortest route for each delivery vehicle was 

calculated by reflecting the specific network and 

movement characteristics of the drone and truck.  

The A* algorithm assists in finding the shortest path 

from the start point to the destination point, and its 

objective function  can be expressed as follows. 

 

    ℎ (1) 

  

where  denotes the cost of the shortest path 

from the starting point to the current point, and 

ℎ denotes the estimated cost of the shortest path 

from the current point to the destination point. Figs. 

2 and 3 display examples of the shortest paths 

derived using the A* algorithm. In the 100×100 size 

grid network, the straight-line distance between 

each node is 1, and the diagonal distance between 

each node is √2. While the truck can only move in a 

straight direction along the grid network, the drone 

can also move diagonally. Thus, in Fig. 2, the 

shortest distance of the truck delivery from the 

start point to the destination point is 4, but that of 

the drone delivery is significantly reduced to 2√2. 

 

Fig. 2 A* shortest path without constraints. 
 

Fig. 3 displays a situation where constraints are 

induced on the drone and truck movements. As the 

drone makes its delivery by bypassing the 

prohibited airspace, the shortest distance becomes 

2  √2 , which is an increase from the shortest 

distance in Fig. 2 (2√2). For the truck, although the 

prohibited airspace can be neglected, the shortest 

distance is increased to 6 due to the introduction of 

a river. 

  In this study, the A* algorithm was employed to 

analyze the shortest paths while reflecting the 

constraints for each delivery vehicle type. Fig. 4 

displays the shortest delivery route search result of 

the truck, which involves bypassing the river to 

reach all 10 delivery destinations. Fig. 5 displays 

the shortest delivery route search result of the 

drone. For the drone, the shortest delivery routes 

for Destinations 5 and 7 were derived by bypassing 

the prohibited airspace. Additionally, unlike the 

truck delivery, the drone did not fly to Destination 9 
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for the delivery, and the routes were searched for 

without any interference by the river. 

 

Fig. 3 A* shortest path with constraints. 
 

Fig. 4 Truck delivery route planning. 
 

Fig. 5 Drone delivery route planning. 
 

22..33  DDiissttaannccee  MMaattrriixx  
The distances for all cases where the drone and 

truck can travel were calculated using the iterative 

shortest path search process. As a heuristic 

technique, the A* algorithm derives an approximate 

solution instead of an optimal solution as it does not 

search for all possible paths. Therefore, the 

minimum distance of the distance matrix uses the 

minimum value derived after 10 iterations for each 

start point and destination point to minimize the 

error between the approximate and optimal 

solutions. This calculation is expressed as Eq. (2). 

 

,   min ,  ,  ⋯  , (2) 

 

where ,   denotes the minimum distance from 

the start point   to the destination point  , and 

, indicates the -th distance value from point  
to point   searched for by the A* algorithm. In 

addition, ,   and ,   are the same assuming 

that the mobile network is symmetrical. 

  The distance matrices of the truck and drone 

are displayed in Tables 1 and 2, respectively. D 

denotes the delivery depot, which is the delivery 

starting point, and numbers 1 to 10 represent the 10 

delivery destinations. 

  For Destination 3, the delivery distance 

traveled by the truck is , 3  52 , as the 

river must be bypassed. In contrast, the drone can 

fly straight to the destination; hence, the distance 

traveled by the drone is approximately five times 
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smaller, with , 3  10. Additionally, both the 

truck and the drone exhibit the same delivery 

distance of 10 for Destination 10. 

  In Table 2, , 9 , which indicates the 

distance from each starting point to Destination 9, 

and 9, , which indicates the distance from 

Destination 9 to each node, are null. This is because 

Destination 9 is located within prohibited airspace; 

hence, the drone cannot make the delivery.  

 

Table 1 Truck distance matrix 
  D 1 2 3 4 5 6 7 8 9 10 

D - 70 42 52 70 65 30 60 70 35 10 

1 70 - 30 60 80 135 80 130 80 105 80 

2 42 30 - 30 70 105 52 102 70 77 52 

3 52 60 30 - 60 75 62 72 80 57 42 

4 70 80 70 60 - 71 100 90 140 75 60 

5 65 135 105 75 71 - 55 21 75 30 55 

6 30 80 52 62 100 55 - 50 40 25 40 

7 60 130 102 72 90 21 50 - 70 25 50 

8 70 80 70 80 140 75 40 70 - 65 80 

9 35 105 77 57 75 30 25 25 65 - 25 

10 10 80 52 42 60 55 40 50 80 25 -  

 

Table 2 Drone Distance Matrix 
  D 1 2 3 4 5 6 7 8 9 10 

D - 52 28 10 52 58 24 49 52 - 10 

1 52 - 24 42 74 105 68 101 74 - 57 

2 28 24 - 24 64 86 44 77 58 - 38 

3 10 42 24 - 48 62 34 59 57 - 14 

4 52 74 64 48 - 65 71 79 105 - 42 

5 58 105 86 62 65 - 49 16 74 - 48 

6 24 68 44 34 71 49 - 38 34 - 28 

7 49 101 77 59 79 16 38 - 64 - 48 

8 52 74 58 57 105 74 34 64 - - 65 

9 - - - - - - - - - - - 

10 10 57 38 14 42 48 28 48 62 - - 
 

22..44  OOppttiimmaall  rroouuttee  sseelleeccttiioonn  uussiinngg  ggeenneettiicc  
aallggoorriitthhmm  

In this study, optimal routes were derived using 

an objective function that minimizes the truck and 

the drone return times to the delivery depot after 

completing all deliveries (Eq. 3).  

 

min  (3) 

 

where  is the cumulative delivery time to arrive at 

point  , and   indicates the number of delivery 

destinations. Accordingly,   1  represents the 

delivery depot, the return point after completing all 

deliveries, and   represents the return time to 

the depot.  

The problem of deriving the optimal route for an 

environment containing a combination of drones and 

trucks is a TSP with an NP-hard computational 

complexity. Hence, a genetic algorithm, which is a 

widely used search heuristic technique, was 

employed in this study to solve the problem. 

  The genetic algorithm is a computational model 

based on natural world evolutionary phenomena; it 

is an adaptive search technique inspired by the 

survival of the fittest concept of evolutionary theory 

and the genetics of natural selection [11]. The 

technique searches for an optimal solution by first 

selecting the most optimal gene in a given 

environment and then increases the probability of 

finding a superior solution by passing down the 

dominant genetic trait to the next generation. 

Genetic algorithms are widely used in permutation 

optimization problems as they do not require 

standardized computation processes such as 

crossover, mutation, and substitution. Instead, they 

can be uniquely designed by researchers to suit the 

individual research characteristics. Reducing the 

variability of the solution via the genetic operator is 

an important task in the TSP-based delivery route 

search problem in this study. This can be reflected 

in the genetic operation process by excluding any 

unnecessary operation iterations and by deriving an 

efficient and accurate solution. Fig. 6 illustrates the 

flow chart of the optimal route calculation using a 

genetic algorithm. 
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Fig. 6 Genetic algorithm flow chart 
 

In this study, 400 random chromosomes are 

generated for initial solution calculation, and the 

chromosomes are expressed as the sequence of 

visited nodes for delivery. Subsequently, the nodes 

that can be delivered to by the drone are 

considered to determine the nodes to be delivered 

by the truck and drone. The delivery route that 

begins from node  , passes through node  , and 

finally reaches the destination node   can be 

expressed as two cases as illustrated in Fig. 7. 

When the drone and the truck perform collaborative 

deliveries, the drone departing from node  delivers 

the package to node  and travels to the destination 

node , while the truck travels to from node  to 

node  to reunite with the drone. The drone has a 

limited flight time, which causes limitations in its 

travel distance capability. Thus, when the drone is 

unable to fulfill the delivery, package delivery for 

nodes   ,  , and   is performed by the truck as 

displayed on the right side of Fig. 7. 

The availability of drone delivery can be 

determined using Eq. (4).   and   indicate the 

distances that the drone must travel from node  to 

node   and from node   to node  , respectively, 

and   denotes the maximum flight 

distance of the drone. 

 

Fig. 7 Delivery routes between nodes. 
 

     (4) 

 

When the delivery is only conducted by truck, the 

arrival time  at node  can be obtained through 

   . For the collaborative delivery with the 

truck and drone, the arrival time can be derived 

using Eq. (5).  

 

  max  ,  

/
] (5) 

 

The longer delivery time between that of the 

truck and drone is selected as the final delivery 

time, and it was assumed that the truck or drone, 

whichever arrives first, waits for the other vehicle 

at the node. Furthermore, / denotes a variable 

that controls the relative speed of the drone 

compared to that of the truck. It was assumed that 

the drone travels faster than the truck as it does not 

face delay factors such as traffic lights and 

congestion.  

  The route with the minimum travel time is 

stored as a solution. The algorithm is terminated 

once it fulfills one of the algorithm stop conditions: 

the same solution is repeatedly obtained more than 

10 times or the solution is obtained after 500 

iterations. If the stop condition is not fulfilled, a 

superior chromosome is selected to generate 

offspring chromosomes through mutation operations. 

In this study, 400 chromosomes are randomly 

classified into 80 chromosome groups composed of 

5 chromosomes each, and chromosomes exhibiting 

the minimum travel distance in each population are 

selected. Subsequently, four new offspring 

chromosomes are generated through four mutations 

as illustrated in Fig. 8. The probability of passing 

down suitable chromosomes to offspring increases 
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by replacing the existing five chromosomes with 

four newly generated chromosomes and five 

chromosomes with the minimum travel distance. 

This mutation process is performed for all 80 

groups to derive a new population composed of 400 

offspring chromosomes, and based on the iterations 

of this process, an optimal delivery route is derived. 

The mutation operation in the genetic algorithm 

reduces the number of unnecessary computations 

and quickly finds the optimal solution by passing 

down the superior chromosomes to the offspring 

chromosomes while avoiding the local solution trap. 

In the TSP, the route sequence is a critical factor in 

the solution search; thus, the mutation operation 

used a method that does not significantly harm the 

sequence of the superior chromosomes. 

 

Fig. 8 Genetic algorithm mutations. 
 

22..55  OOppttiimmaall  ddeelliivveerryy  rroouuttee  ssiimmuullaattiioonn  rreessuullttss  
Fig. 9 displays the optimal routes derived using 

the genetic algorithm. The first graph depicts the 

delivery route using only the truck, while the other 

graphs depict the collaborative delivery routes 

using both the truck and drone. The speed ratio 

(/) of drone to truck is 1.5, and the maximum 

flight distances of the drone in each graph are set 

as 50, 70, and 100, respectively. The solid lines 

represent the truck delivery routes, and the dotted 

lines represent the drone delivery routes. When the 

delivery was simulated using only the truck, 422 

time units were consumed, which was the longest 

delivery time. As the drone maximum flight distance 

increases in the collaborative delivery, the number 

of drone delivery nodes increases, and the time 

taken to complete the delivery decreases. In all 

cases, the delivery to Destination 9 is made by the 

truck as it is located within the prohibited airspace. 

The delivery time involving both the drone and 

truck is shorter than that of truck-only delivery, 

indicating a higher efficiency for collaborative 

delivery. 

 Fig. 10 displays the total delivery times 

according to the drone maximum flight distance and 

the relative speed of the drone/truck. Overall, the 

total delivery time decreases as the maximum flight 

distance increases. It can be inferred that the 

increase in the maximum flight distance increases 

the total number of destinations where the drone 

can make deliveries, and delivery time is therefore 

reduced as the effect of adding a separate delivery 

method is generated regardless of the truck 

delivery speed.  
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Fig. 9 Delivery trajectories. 
 

Fig. 10 Total delivery times under various conditions. 
 

Changes in the relative speed did not result in any 

significant difference in the total delivery time for 

the same maximum flight distance. This result is 

because the truck or drone, whichever finishes their 

deliveries first, waits for the other vehicle at the 

point where they reunite. In the existing studies, 

both drones and trucks were assumed to share the 

same route network; thus, the difference in waiting 

time at the point where both vehicles reunite was 

small because it was considered to be the simple 

difference in unit speed for each vehicle. In contrast, 

the waiting time was more significant in this study 

because various constraints on the movement of 

each vehicle type were added.  

 

33..  CCoonncclluussiioonnss  
 

  This study searched for the optimal delivery 

route plan in a delivery system composed of a 

drone and a truck and then compared its efficiency 

with that of delivery using only a truck. The 

limitations of existing studies were remedied by 

applying the constraints of drone prohibited 

airspace and road network disconnection. The 

routes were generated using the A* algorithm, and 

the distance matrices were derived using the 

distance information between the delivery depot 

and each delivery destination. Additionally, a 

genetic algorithm was used to find the optimal route 

for truck and drone cooperative delivery. 

The simulation results demonstrated that the 

collaborative delivery method using both the truck 

and drone improves the delivery efficiency by 
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reducing delivery times compared to those of the 

delivery method using only the truck. However, 

there is the drawback of incurring waiting time at 

the point where the drone and the truck reunite. 

Thus, it is necessary to reduce this time in actual 

situations. We intend to consider the cost and 

energy consumption incurred during the operation 

of drones and trucks in addition to the delivery time 

in a future study. 
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