• Title/Summary/Keyword: unknown disturbance

Search Result 194, Processing Time 0.031 seconds

Robust adaptive controller design for robot manipulator (로보트 매니퓰레이터에 대한 강건한 적응제어기 설계)

  • 안수관;배준경;박종국;박세승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.177-182
    • /
    • 1989
  • In this paper a new adaptive control algorithm is derived, with the unknown manipulator and payload parameters being estimated online. In practice, we may simplify the algorithm by not explicity estimating all unknown parameters. Further, the controller must be robust to residual time-varying disturbance, such as striction or torque ripple. Also, the reference model is a simple douple integrator and the acceleration input for robot manipulator consists of a proportion and derivative controller for trajectory tracking purposes. The validity of this control is confirmed in simulation where two-link robot manipulator shows the robust performances in spite of the existing nonlinear interaction and unknown parametrictings

  • PDF

Trajectory planning for redundant robot by joint disturbance torque minimization (여유자유도 로봇의 관절외란최소화를 이용한 궤적계획)

  • 최명환;최병진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1581-1584
    • /
    • 1997
  • This paper poropsed an efficient optimization technuque to resolve redundancy and a trajectory planning for a high precision control using proposed optimization technique. The proposed techniqus is the joint disturbance torque optimizatioin considering redundancy in the joing servo control. Joint disturbance torque is not unknown it is described dynamic equation ignored friction and viscosity. The proposed technique is used the dynamic equatiion included the joint disturbance torque characteristics. Numerical example of 3 joint planar redundant robot manipulator is simulated. In the 2-norm minimization of joint disturbance torque we compared pseudoinverse local optimization with proposed technique, and the results showed better the proposed technique. So the proposed technique can be highly precision controlled redundant robot manipulators in the joint servo control.

  • PDF

Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer (내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계)

  • Lee, Cho-Won;Kim, In Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.

Design of Output Regulator for Rejecting Periodic Eccentricity Disturbance in Optical Disc Drive

  • Shim, Hyung-Bo;Kim, Hyung-Jong;Chung, Chung-Choo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.452-457
    • /
    • 2003
  • An add-on type output regulator is proposed in this paper. By an add-on controller we mean an additional controller which operates harmonically with a pre-designed one. The role of the add-on controller is to reject a sinusoidal disturbance of unknown magnitude and phase but with known frequency. Advantages of the proposed controller include that (1) it can be used only when the performance of disturbance rejection needs to be enhanced, (2) when it is turned on or off, unwanted transient can be avoided (i.e., bumpless transfer), (3) it is designed for perfect disturbance rejection not just for disturbance reduction, (4) ability for perfect rejection is preserved even with uncertain plant model. This design may be promising for optical disc drive (ODD) systems in which disc eccentricity results in a sinusoidal disturbance. For ODD systems, the sensitivity function obtained by the pre-designed controller, which may have been designed by the lead-lag, $H_{\infty}$, or DOB (disturbance observer) technique, does not change much with the add-on controller except at the frequency of the disturbance. Since the add-on controller does the job of rejecting major eccentricity disturbance, the gain of the pre-designed controller does not have to be too high.

  • PDF

Fuzzy Estimator for Gain Scheduling and its Appliation to Magnetic Suspension

  • Lee, Seon-Ho;Lim, Jong-Tae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.106-110
    • /
    • 2001
  • The external force disturbance is the one of the main causes that deteriorate the performance of the magnetic suspension. Thus, this paper develops a fuzzy estimator for gain scheduling control of magnetic suspension system suffering from the unknown disturbance. The propose fuzzy estimator computes the disturbance injected to the plant the gain scheduled controller generates the corresponding stabilizing control input associated with estimated disturbance. In the simulation results we confirm the novelty of the proposed control scheme comparing with the other method using a feedback linearization.

  • PDF

Modelling of High-Speed Pantograph and Controller Design Using Disturbance Observer (고속 팬터그래프의 새로운 동적 모형 및 외란관측기를 이용한 제어기 설계)

  • Jo, Nam-Hoon;Lee, Kang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2233-2239
    • /
    • 2007
  • The pantograph-catenary system is one of important components for high-speed rail system that are powered electrically. Electrical power is delivered from a catenary structure to the train via a pantograph and thus it is very important to regulate the contact force between catenary and pantograph. Although a lot of research results for active pantograph have been reported, most of them have made an unrealistic assumption that the catenary displacement is constant with respect to the time. In this paper, we present a new pantograph model that regards the catenary displacement as an unknown disturbance input. Moreover, a disturbance observer based controller is proposed to remove the effect of disturbance, i.e., the catenary displacement variation. The computer simulation result shows that the substantial improvement in regulating the contact force can be achieved by the proposed controller.

Periodic Adaptive Compensation of State-dependent Disturbance in a Digital Servo Motor System

  • Ahn, Hyo-Sung;Chen, YangQuan;Yu, Won-Pil
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • This paper presents an adaptive controller for the compensation of state-dependent disturbance with unknown amplitude in a digital servo motor system. The state-dependent disturbance is caused by friction and eccentricity between the wheel axis and the motor driver of a mobile robot servo system. The proposed control scheme guarantees an asymptotical stability for both the velocity and position regulation. An experimental result shows the effectiveness of the adaptive disturbance compensator for wheeled-mobile robot in a low velocity diffusion tracking. A comparative experimental study with a simple PI controller is presented.

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

A Study on the robust fault diagnosis and fault tolerant control method for the closed-loop control systems (폐회로 제어시스템의 강인한 고장진단 및 고장허용제어 기법 연구)

  • Lee, Jong-Hyo;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.138-145
    • /
    • 2000
  • This paper presents a robust fault diagnosis and fault tolerant control method for the control systems in closed-loop affected by unknown inputs or disturbances. The fault diagnostic scheme is based on the disturbance-decoupled state estimation using a 2-stage state observer for state, actuator bias and sensor bias. The estimated bias show the occurrence time, location and type of the faults directly. The estimated state is used for state feedback to achieve fault tolerant control against the faults. Simulation results show that the method has definite fault tolerant ability against actuator and sensor faults, moreover, the faults can be detected on-line, isolated and estimated simultaneously.

  • PDF

An adaptive control algorithm for the speed control of hydraulic-servo system (유압 서보 시스템의 속도 제어를 위한 적응제어기의 설계에 관한 연구)

  • Yun, Ji-Seop;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 1986
  • An adaptive controller which is robust to the unknown load disturbance is developed for electro-hydraulic speed control systems. Since the load disturbance degrades the performance of the controller such as a steady state error and rise time in the conventional control system, appropriate adjustment of the controller is necessary in order to obtain the desired performances. The adaptation mechanism was designed to tune the feedforward gain, based upon minimization of ITAE (integral of time-multiplied absolute error) performance. The unknown load distrubance was identified by using an analog computer from the relationship between the velocity of the hydraulic motor and the load pressure. To evaluate the performance of the controller a series of simulations and experiments were conducted for various load conditions. Both results show that the proposed adaptive controller shows abetter performance than the conventional controller in terms of the steady state error and rise time.

  • PDF