• Title/Summary/Keyword: unknown compounds

Search Result 160, Processing Time 0.034 seconds

Effects of Dioxin Exposed in Human by Using Radioactive cDNA Microarray

  • Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Hye-Won;Sohn, Sung-Hwa;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Lee, Seung-Min;Lee, Eun-Il;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.35-47
    • /
    • 2006
  • 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) are well known as the most toxic environmental compound in these days. Many researches are reported that dioxin produces multiple toxic effects, such as endocrine toxicity, reproductive toxicity, immunotoxicity and cancer. In this study, we carried to discover novel evidence for previously unknown gene expression patterns in human exposed to dioxin by using radioactive cDNA microarray. 548 workers who were divided into experimental and control groups according to their urinary Naphthol levels were enrolled in our study. Blood mRNA in human was isolated, and the gene expression profiles were analyzed by cDNA microarray. Gene expression analysis identified 52 genes which exhibited a significant change. In our study, most notably, genes involved in cell cycle, cell proliferation, signal transduction and apoptosis in human exposed to dioxin, such as CCND3, TSHR, and EFRN5, were up-regulated. In the current study, we observed gene expression of people that are exposed to dioxin using radioactive cDNA microarray. Through these results, we suggest when objects are exposed to toxic compounds, such as dioxin, the radioactive cDNA microarray may be using in sensitively detecting of cancerous change.

Growth and Ginsenoside Content of One Year Old Ginseng Seedlings in Hydroponic Culture over a Range of Days after Transplanting (수경재배 시 1년생 묘삼 이식 후 경과일수에 따른 인삼의 생육 및 Ginsenoside 함량)

  • Jeong, Dae Hui;Lee, Dae Young;Jang, In Bae;Yu, Jin;Park, Kee Choon;Lee, Eung Ho;Kim, Young Jun;Park, Hong Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.464-470
    • /
    • 2018
  • Background: Ginseng produced by hydroponics can be cultivated without using agricultural chemicals; thus, it can be used as a raw materials for functional foods, medicines, and cosmetics. This study aimed to determine the optimal harvesting time to obtain the highest levels of ginsenoside and ginseng, as this was not previously unknown. Methods and Results: One-year-old organic ginseng seedlings were transplanted and cultivated using hydroponics for 150 days in a venlo-type greenhouse, using ginseng nursery bed soil and a nutrient solution ($NO_3{^-}-N$; 6.165, P; 3.525, K; 5.625, Ca; 4.365, Mg; 5.085, S; $5.31mEq/{\ell}$). Ginsenoside content and fresh and dry weights were higher at 120 days after transplanting than at 30, 60, 90, and 150 days. Total ginsenoside content was 11.86 times higher in the leaf and stem than in the root at 120 days after transplanting. Ginsenosides F1, F2, F3, and F5 were detected in ginseng leaves and stems. These chemical compounds are known to be effective in altering skin properties, including whitening, anti-inflammation, and anti-aging. Conclusions: Optimal harvesting time for ginseng cultivated using hydroponics was 120 days after transplanting when the biomass and ginsenoside content were highest.

Analysis of dye components using MECC and ion-pairing chromatography (MECC법과 Ion-Pairing 크로마토그래피법을 이용한 염료성분의 분석)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Micellar electrokinetic capillary chromatography(MECC) and HPLC with ion-pairing mechanism were applied for the separation of the well known environmental wastes from dye industry. These compounds include H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. MECC method was also applied to separate few acid dyes including Acid Orange 7, Acid Orange 5 and Acid Blue 92 and direct dye such as Direct Red 80. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of a given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

Preparation and Structure Properties of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 Perovskites

  • Kareem Ali Jasim;Hind Abdulmajeed Mahdi;Rafah Ismael Noori;Marwa Ayad Abdulmajeed
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.367-371
    • /
    • 2023
  • In this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples' compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples' well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sample has a tetragonal symmetry structure. Each sample's mass density was observed to alter as the lead oxide content rose. Scanning electron microscope (SEM) images of the three phases revealed that different Ca-O and Cu-O layers can cause different grain sizes, characterized by elongated thin grains, without a preferred orientation.

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

Studies on the Mucilage of the Root of Abelmoschus manihot, MEDIC -[Part II] Detection of Sugars in the Mucilage- (황촉규근(黃蜀葵根) 점액(粘液)에 관(關)한 연구(硏究) -[제2보(第二報)] 점액내(粘液內) 당류(糖類)의 검색(檢索)-)

  • On, Doo-Heayn;Im, Zei-Bin;Sohn, Joo-Hwan
    • Applied Biological Chemistry
    • /
    • v.19 no.1
    • /
    • pp.41-50
    • /
    • 1976
  • When the root of Abelmoschus manihot, MEDIC is stored in the water, the mucilage is extracted. The mucilage has contained some of free reducing sugars. We have investigated the change of free reducing sugars by the Bertrand method and also free reducing sugars are detected by paper chromatography and thin layer chromatography. The mucilage is isolated from the root of Abelmoschus manihot, MEDIC and its chemical components are detected. The mucilage and hydrolyzed products are examined by paper chromatography, thin layer chromatography and tested carbohydrates under the usual way. The results are as follow: 1. The mucilage has contained five kinds of monosaccharides which are rhamnose, xylose, arabinose, glucose, galactose and other three kinds of uronic acids. 2. In the mucilage, glucose is the most changeable sugar and the next are arabinase and galactose. 3. Uronic acids, pylose and rhamnose are remained comparatively longer than glucose, galactose and arabinose in the mucilage. 4. The hydrolyzed products of mucilage consisted of rhamnose, xylose, arabinose, glucose, gelactose, ribose, some uronic acids and other unknown compounds. 5. The essence of mucilage isolated from the root of Abelmoschus manihot, MEDIC is complex saccharide, glucose and ribose are newly certified. 6. We can guess that the components of the mucilage are rhamnose, xylose, arabinose, glucose, ribose, uronic acids and other unknown compounds.

  • PDF

Contents of Bioactive Constituents and Antioxidant Activities of Cultivated and Wild Raspberries (재배종 및 야생 산딸기의 기능성 성분 함량과 항산화 활성)

  • Lee, Heon Ho;Moon, Yong Sun;Yun, Hae Keun;Park, Pil Jae;Kwak, Eun Jung
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • In order to select the raspberry cultivars that have high contents of bioactive constituents and high antioxidant activities, 7 cultivated and 2 wild raspberries which were selected and cultivated in the Bokbunja Institute were evaluated for their physicochemical characteristics, bioactive constituents, and antioxidant activities. The wild raspberry of Asan was the smallest among the sample raspberries but it had the highest sugar and lowest acid contents among the raspberries. Another wild raspberry of Ulleungdo had the highest total phenolic compound and ellagic acid contents, 182.97, $55.25mg{\cdot}100g^{-1}FW$, respectively, although it was small and had low sugar and high acid contents. Among the widely cultivated raspberry cultivars in Kimhae, 'Wangttal' cultivar was a big raspberry with 12.80% sugar content, and another unknown raspberry cultivar was as small as the wild raspberry with 14.60% sugar content. Although 'Wangttal' and the unknown raspberry cultivars cultivated in Kimhae possess lower contents of total phenolic compound (159.62, $165.94mg{\cdot}100g^{-1}$) and ellagic acid (45.7, $52.1mg{\cdot}100g^{-1}$ ) than the wild raspberry of Ulleungdo, the contents of total flavonoids (14.28, $14.90mg{\cdot}100g^{-1}$) and total anthocyanins (28.69, $30.48mg{\cdot}100g^{-1}$) were higher. Also the wild raspberry of Ulleungdo, 'Wangttal', and the unknown raspberry cultivar of Kimhae had higher antioxidant activities measured by FRAP (Ferric reducing antioxidant power), DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS (2,2' azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) assays. The present study shows that three raspberry cultivars could be potent resources for raspberry breeding and functional material development.

Decomposition of a Substituted Diphenyl Ether Herbicide(MC-4379) by Some Environmental Factors (환경요인(環境要因)에 의(依)한 치환(置換) Diphenyl Ether계(系) 제초제(除草劑) MC-4379의 분해(分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo;Kim, Hae-Yong
    • Applied Biological Chemistry
    • /
    • v.18 no.1
    • /
    • pp.30-41
    • /
    • 1975
  • A substituted diphenyl ether herbicide(MC-4379) was studied on the decomposition by some environmental factors; sunlight, microorganisms, and the crude enzyme in rice plant extract. All the decomposition products were confirmed by means of TLC, GLC, and IR. The parent compound and the decomposition products were put to the test for the effect on the growth of some plants. The results obtained are summarized as follows: 1. Photolysis Amino-MC-4379, 2,4-dichloro-3'-carboxyl-4'-nitrodiphenyl ether, Nitrofen, 2,4-dichloro-3'-carboxyl-4'-amino-diphenyl ether, amino-Nitrofen, 3-carboxymethyl-4-nitrophenol, p-nitrophenol, p-aminophenol, etc. were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. It was confirmed that the solution-phase photolysis of MC-4379 was accelerated much more by the aid of a photosensitizer benzophenone. 2. Degradation by the crude extract of germinating rice seeds Nitrofen was confirmed as a major degradation product, in addition to a relatively small amount of and unknown compound. Most of the parent compound remained unchanged. 3. Degradation by microorganisms Nitrofen and amino-MC-4379 were confirmed as the major products. in addition to a small amount of an unknown compound. 4. The germinating rice seeds and soybean were grown in the 1,000 ppm emulsions of some chemicals, respectively. The effect on rice plant growth was in the inhibitory order of p-nitrophenol > C-6989> Nitrofen > amino-Nitrofen > MC-4379. The effect on soybean was in the order of Nitrofen > amino-Nitrofen > MC-4379. Two weeds, Amantus blitum and Setaria viridis were grown in the 500 ppm emulsions containing the compounds, respectively. After incubation for 3 days, it was observed that all the shoots had been dead.

  • PDF

Studies on the Browning of Red Ginseng (홍삼(紅蔘)의 갈변(褐變)에 관(關)한 연구(硏究))

  • Kim, Dong-Youn
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.60-77
    • /
    • 1973
  • The non-enzymatic browning phenomenons of red ginseng were studied to identify these compounds which function as the factors for browning. The samples were classified into five divisions; Fresh ginseng, blanched ginseng, sun dried red ginseng, dehydrated red ginseng, and browning accelerated red ginseng respectively, and the various compounds in each of them were analyzed quantitatively and investigated the compounds which were thought to function for browning during the drying and the dehydration processes; the results were as follows. 1. The chemical compositions among five divisions did not show any difference except a) total and reducing sugars, b) total acids, c) water soluble extracts; a) and b) were decreased during the drying process, c) was decreased about 6-7% in red ginseng divisions. 2. Sixteen free amino acids; asp., thr., ser., glu., gly., ala., val., cys., met., ileu., leu., tyr., phe., lys., his., and arg, were identified in each division. Among them the arg, was extremly high. All of the essential amino acids were contained, while generally these amino acids were decreased in drying period and their rates were smaller in dehydrated red ginseng than in sun dried red ginseng. 3. Three kinds of sugars; fructose, glucose and sucrose were identified and other four kinds of unidentified sugars were seperated. The content of sucrose was 80% and all kind of sugars were generally less in red ginseng divisions than in the other two divisions. The decreasing rate of sngars was higher in the sun dried red ginseng than in the dehydrated red ginseng. Especially the decreasing rate of the reducing sugars was high as compared with that of sucrose. 4. Almost all the ascorbic acid was decomposed during the blanching whereas there could'nt be shown any change of the ascorbic acid content during the period of drying. 5. Eleven kinds of volatile acids; acetic acid, propionic acid, acrylic acid, iso-butyric acid, n-butyric acid, isovaleric acid, n-valeric acid, isoheptylic acid, n-heptylic acid, and an unknown volatile acid were identified. They showed a little decrease during the period of blanching perhaps on account of their volatility whereas they were increased in drying period. 6. Six kinds of non-volatile acids; citric acid, malic acid, ${\alpha}-ketoglutaric$ acid, succinic acid, pyruvic acid and glutaric acid were identified. The content of them were decreased during the drying procedures in red ginseng but only that of succinic acid was increased. 7. Three kinds of polyphenols; 3-caffeyl quinic acid, 4-caffeyl quinic acid, 5-caffeyl quinic acid and an unknown polyphenol were identified. The content of them showed considerable decrease during the drying procedures, especially in sun drying. 8. The intensity of the browning in each divisior was as follows; browning accelerated red ginseng> sun dried red ginseng> dehydrated red ginseng. 9. In the process of red ginseng preparation, a. certain relationship could be found between the decreasing rates of amino acids, reducing sugars, polyphenols and the intensity of browning. Therefore the browning phenomenon may be concluded that nonenzymatic browning reactions of the amino-carbonyl reaction and autoxidation of polyphenols are the most important processes, furthermore, as their reactions could be controlled it is thought to be possible to accelerate effectively browning within a relatively short period.

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.