• 제목/요약/키워드: univariate time series

검색결과 62건 처리시간 0.031초

Forecasting Exchange Rates: An Empirical Application to Pakistani Rupee

  • ASADULLAH, Muhammad;BASHIR, Adnan;ALEEMI, Abdur Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.339-347
    • /
    • 2021
  • This study aims to forecast the exchange rate by a combination of different models as proposed by Poon and Granger (2003). For this purpose, we include three univariate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Pakistani Rupee against the US dollar by a combination of different forecasting techniques. The observations from M1 2020 to M12 2020 are held back for in-sample forecasting. The models are then assessed through equal weightage and var-cor methods. Our results suggest that NARDL outperforms all individual time series models in terms of forecasting the exchange rate. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models with the lowest MAPE value of 0.612 suggesting that the Pakistani Rupee exchange rate against the US Dollar is dependent upon the macro-economic fundamentals and recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting, as stated by Poon and Granger (2003).

전이함수잡음모형에 의한 공주지점의 용존산소 예측 (Forecasting of Dissolved Oxygen at Kongju Station using a Transfer Function Noise Model)

  • 류병로;조정석;한양수
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.349-354
    • /
    • 1999
  • The transfer function was introduced to establish the prediction method for the DO concentration at the intaking point of Kongju Water Works System. In the mose cases we analyze a single time series without explicitly using information contained in the related time series. In many forecasting situations, other events will systematically influence the series to be forecasted(the dependent variables), and therefore, there is need to go beyond a univariate forecasting model. Thus, we must bulid a forecasting model that incorporates more than one time series and introduces explicitly the dynamic characteristics of the system. Such a model is called a multiple time series model or transfer function model. The purpose of this study is to develop the stochastic stream water quality model for the intaking station of Kongju city waterworks in Keum river system. The performance of the multiplicative ARIMA model and the transfer function noise model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the transfer function noise model lead to the improved accuracy.

  • PDF

단기 시계열 제품의 전이함수를 이용한 수요예측과 마케팅 정책에 미치는 영향에 관한 연구 (A Study on the Demand Forecasting by using Transfer Function with the Short Term Time Series and Analyzing the Effect of Marketing Policy)

  • 서명율;이종태
    • 산업공학
    • /
    • 제16권4호
    • /
    • pp.400-410
    • /
    • 2003
  • Most of the demand forecasting which have been studied is about long-term time series over 15 years demand forecasting. In this paper, we set up the most optimal ARIMA model for the short-term time series demand forecasting and suggest demand forecasting system for short-term time series by appraising suitability and predictability. We are going to use the univariate ARIMA model in parallel with the bivariate transfer function model to improve the accuracy of forecasting. We also analyze the effect of advertisement cost, scale of branch stores, and number of clerk on the establishment of marketing policy by applying statistical methods. After then we are going to show you customer's needs, which are number of buying products. We have applied this method to forecast the annual sales of refrigerator in four branch stores of A company.

월유출량계열의 확장과 예측을 위한 추계학적 다중 입출력모형 (Stochastic Multiple Input-Output Model for Extension and Prediction of Monthly Runoff Series)

  • 박상우;전병호
    • 물과 미래
    • /
    • 제28권1호
    • /
    • pp.81-90
    • /
    • 1995
  • 본 연구에서는 장기간의 수문기상자료를 보유하고 있으나 유출량자료의 관측년한이 짧은 유역에서 장기간의 월유출량자료를 확장하고 예측할 수 있는 추계학적 시스템 모형을 개발하고자 한다. 그 방법으로 주기성과 경향성을 갖는 월유출량, 월강수량 및 윌증발량자료를 시계열 분석하여 seasonal ARIMA 형태의 단변량 모형을 유도하는 한편, 각 계열간의 교차상관분석으로부터 월강수량 및 윌증발량을 입력변수로 하고 월유출량을 출력변수로 하는 다중 입력-단일 출력관계의 설명모형을 유도하여 단변량 시계열모형과 비교 검토하였다. 본 연구의 결과 월유출량자료의 확장과 예측에 있어서 다중 입출력모형의 정확성과 적용가능성이 매우 높은 것으로 판단되었다.

  • PDF

Extending the Scope of Automatic Time Series Model Selection: The Package autots for R

  • Jang, Dong-Ik;Oh, Hee-Seok;Kim, Dong-Hoh
    • Communications for Statistical Applications and Methods
    • /
    • 제18권3호
    • /
    • pp.319-331
    • /
    • 2011
  • In this paper, we propose automatic procedures for the model selection of various univariate time series data. Automatic model selection is important, especially in data mining with large number of time series, for example, the number (in thousands) of signals accessing a web server during a specific time period. Several methods have been proposed for automatic model selection of time series. However, most existing methods focus on linear time series models such as exponential smoothing and autoregressive integrated moving average(ARIMA) models. The key feature that distinguishes the proposed procedures from previous approaches is that the former can be used for both linear time series models and nonlinear time series models such as threshold autoregressive(TAR) models and autoregressive moving average-generalized autoregressive conditional heteroscedasticity(ARMA-GARCH) models. The proposed methods select a model from among the various models in the prediction error sense. We also provide an R package autots that implements the proposed automatic model selection procedures. In this paper, we illustrate these algorithms with the artificial and real data, and describe the implementation of the autots package for R.

환경생태 자료 분석을 위한 시계열 분석 방법 연구 (A Review of Time Series Analysis for Environmental and Ecological Data)

  • 모형호;조기종;신기일
    • 환경생물
    • /
    • 제34권4호
    • /
    • pp.365-373
    • /
    • 2016
  • 환경생태 자료 분석에 사용된 많은 자료가 시간에 따라 얻어지고 있다. 조사된 시점의 수가 적은 경우에는 자료가 충분한 정보를 주지 않기 때문에 반복 측정하거나 여러 지점을 조사하여 종합적인 분석을 수행하게 된다. 이때 사용하는 방법이 경시적 자료 분석(longitudinal data analysis) 또는 혼합모형(mixed model) 분석이다. 그러나 시점의 수가 많아 정보의 양이 충분하다면 반복적인 자료가 필요하지 않으며 이러한 자료는 시계열 분석 기법을 이용하여 분석하게 된다. 특히 현재와 같이 다수의 시점에서 얻어진 자료의 수가 많아지고 있는 상항에서 각 변수 간에 서로 어떤 영향을 주는지 또는 향후 어떤 경향을 띠게 되는지 예측을 원한다면 시계열 분석 기법을 사용하여 자료를 분석해야 한다. 본 연구에서는 단변량 시계열 분석(univariate time series analysis), 개입 분석(intervention time series model), 전이함수 모형 분석(transfer function model), 다변량 시계열 분석(multivariate time series model) 기법을 소개하고 현재까지 진행된 국내외 연구 논문을 살펴보았다. 또한 향후 환경생태 자료 분석에서 중요하게 사용될 수 있는 오차수정 모형(error correction model)을 소개하였다.

Analysis on Decomposition Models of Univariate Hydrologic Time Series for Multi-Scale Approach

  • Kwon, Hyun-Han;Moon, Young-Il;Shin, Dong-Jun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1450-1454
    • /
    • 2006
  • Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are given to demonstrate highlight the power of this method in contrast and comparison of other ones. A presentation of the energy-frequency-time distribution of these signals found to be more informative and intuitive when based on Hilbert transformation.

  • PDF

Common Feature Analysis of Economic Time Series: An Overview and Recent Developments

  • Centoni, Marco;Cubadda, Gianluca
    • Communications for Statistical Applications and Methods
    • /
    • 제22권5호
    • /
    • pp.415-434
    • /
    • 2015
  • In this paper we overview the literature on common features analysis of economic time series. Starting from the seminal contributions by Engle and Kozicki (1993) and Vahid and Engle (1993), we present and discuss the various notions that have been proposed to detect and model common cyclical features in macroeconometrics. In particular, we analyze in details the link between common cyclical features and the reduced-rank regression model. We also illustrate similarities and differences between the common features methodology and other popular types of multivariate time series modelling. Finally, we discuss some recent developments in this area, such as the implications of common features for univariate time series models and the analysis of common autocorrelation in medium-large dimensional systems.

고차원 혼합주기 시계열모형의 해운경기변동 예측력 검정 (The forecasting evaluation of the high-order mixed frequency time series model to the marine industry)

  • 김현석
    • 해운물류연구
    • /
    • 제35권1호
    • /
    • pp.93-109
    • /
    • 2019
  • 본 연구는 혼합주기모형을 해운경기 예측에 활용하기 위해 기존의 비선형 장기균형관계분석에서 통계적으로 유의한 요인들을 단기모형에 적용하였다. 가장 일반적인 단일변수(univariate) AR(1) 모형과 혼합주기모형으로부터 각각 표본외 예측을 실시하여 예측오차와 비교한 결과 혼합주기모형의 예측력이 AR(1) 모형보다 향상됨을 확인하였다. 이러한 실증분석은 새로운 고차원 혼합주기모형이 해운경기변동 예측에 유용한 모형임을 의미하며, 즉, 최근 다변수 시계열 자료가 주로 장기균형관계(long-run equilibrium)를 대상으로 하고 있는데, 고차주기와 같은 정보를 분석에 포함할 경우 단기 해운경기 분석모형의 예측력이 향상될 수 있음을 의미하는 분석결과이다.

건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較) (Short-term Construction Investment Forecasting Model in Korea)

  • 김관영;이창수
    • KDI Journal of Economic Policy
    • /
    • 제14권1호
    • /
    • pp.121-145
    • /
    • 1992
  • 본고(本稿)에서는 현재의 경제상황을 잘 반영하는 건설투자활동(建設投資活動)의 단기예측모형(短期豫測模型)을 정립하고자 먼저 관련 시계열자료의 안정성(安定性) 여부(與否)와 순환성(循環性), 계절성(季節性)의 특성을 살펴본 후 여러 단기모형의 예측력(豫測力), 정합성(整合性), 설명력(說明力)을 비교 검토했다. 단위근(單位根) 검정(檢定)과 자기상관계수(自己相關係數) 스펙트랄 밀도함수 분석의 결과, 건설관련 시계열자료들이 대체로 단위근(單位根)을 갖지 않음으로써 안정적이고 주기적인 순환변동을 하고 있으며, 시차변수의 설명력이 높은 특성을 나타내었다. 또한 건설투자자료의 특성이 선행지표(先行指標)인 건축허가연면적(建築許可延面積) 및 건설수주액(建設受注額)과 아주 유사하여 건설투자 단기예측에 있어서 두 지표 사이의 시차관계(時差關係) 파악이 중요함을 알 수 있었다. 제(第)III장(章)에서는 단변량(單變量) 시계열모형(時系列模型)으로 ARIMA모형(模型)과 승법선형추세예측모형(乘法線型趨勢豫測模型)을, 다변량(多變量) 시계열모형(時系列模型)으로는 첫째, 선행지표(先行指標)를 이용한 1차자기회귀모형(次自己回歸模型), VAR모형(模型), 둘째 GNP자료를 이용한 거시경제모형의 단순한 축약형모형(縮約型模型)과 VAR모형(模型)을 제시하고 이들을 비교 평가하였다. 이에 따르면 단변량 시계열모형보다는 다변량 시계열모형이 시간이 경과할수록 예측오차(豫測誤差)가 커지지 않는다는 점에서 우수한 것으로 나타났으며, 다변량모형 중에서도 벡터자기회귀모형이 여타 모형보다 절대예측오차평균(絶對豫測誤差平均), 평균자승근(平均自乘根) 퍼센트 오차(誤差), 결정계수(決定係數) 등 모든 면에서 우수한 것으로 평가되었다. 이는 최근 건설투자가 추세에서 벗어난 급증세를 지속하고 있음을 고려할 때 타당한 결론이라 생각된다.

  • PDF