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Abstract
In this paper we overview the literature on common features analysis of economic time series. Starting from

the seminal contributions by Engle and Kozicki (1993) and Vahid and Engle (1993), we present and discuss the
various notions that have been proposed to detect and model common cyclical features in macroeconometrics.
In particular, we analyze in details the link between common cyclical features and the reduced-rank regression
model. We also illustrate similarities and differences between the common features methodology and other
popular types of multivariate time series modelling. Finally, we discuss some recent developments in this area,
such as the implications of common features for univariate time series models and the analysis of common
autocorrelation in medium-large dimensional systems.
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1. Introduction

Economic time series could be characterized by several features such as trends, cycles, seasonality,
serial correlation, and so on. When a set of series possesses the same type of feature, it could be the
case that a linear combination of them does not necessarily possesses the feature: this is the most
interesting case, for which Engle and Kozicki (1993) provided the following definition: “A feature,
which is present in each of a set of series, is said to be common to those series when there exists a
nonzero linear combination of these series that does not have the feature”. A well known example of
common features is cointegration (Engle and Granger, 1987; Johansen, 1988): a group of series that
possesses stochastic trends is cointegrated when there are some linear combinations of the variables
that are stationary, i.e. do not have stochastic trends. Nowadays, there is a huge collection of spe-
cial cases of common features. A comprehensive, although still partial, list includes: codependence
(Gourieroux and Peaucelle, 1988; Vahid and Engle, 1997) and the scalar component model (Tiao and
Tsay, 1989), when a linear combination of variables possesses shorter memory than individual series;
common serial correlation (Engle and Kozicki, 1993; Vahid and Engle, 1993), when a linear combi-
nation of serially correlated series is an innovation w.r.t. the past; cotrending (Chapman and Ogaki,
1993), when a linear combination of trend-stationary time series no longer displays deterministic
trend; common volatility (Engle and Kozicki, 1993; Engle and Susmel, 1993), when a linear combi-
nation of conditionally heteroskedastic time series eliminates conditional heteroskedasticity; seasonal
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cointegration (Hylleberg et al., 1990), when a linear combination of seasonally integrated series is
nonseasonal; co-breaking (Hendry, 1999; Hendry and Massmann, 2007), when a set of series appears
subject to structural breaks but a linear combination of them does not display the breaks; codependent
cycles (Vahid and Engle, 1997), when a linear combination of a group of variables has shorter memory
than the individual series; common nonlinearity (Anderson and Vahid, 1998), when the conditional
expectation of each element of a vector time series is nonlinear w.r.t. the conditional vector but there
exist a linear combination of them whose conditional expectation is linear w.r.t. the conditional vec-
tor; common seasonal cycles (Cubadda, 1999), when there exists a linear combination of seasonally
differenced series which follows an MA process of low order; common panel structures (Hecq et al.,
2000), when there is a linear combination of the variables in a panel data which is white noise for
all individuals of the panel; nonlinear cotrending (Bierens, 2000), when a linear combination of the
components of a set of stationary time series around nonlinear deterministic time trends is stationary
around a linear trend or a constant; polynomial common serial correlation (Cubadda and Hecq, 2001),
when there exists a polynomial combination of serially correlated time series that is an innovation;
long-run pure variance common feature (Engle and Marcucci, 2006), when the conditional variances
of a collection of assets all depend upon a small number of variance factors; unpredictable polynomial
combinations (Paruolo, 2006), when a polynomial linear combination of series integrated with differ-
ent orders is an innovation; weak form of common serial correlation (Hecq et al., 2006), when a linear
combination of serially correlated series adjusted for the equilibrium errors is an innovation; common
periodic correlation (Haldrup et al., 2007), which extends the notion of common serial correlation to
periodic autoregressive models. From a statistical point of view, common features imply a reduction
to more parsimonious structures such as common factor representations (see, i.a., Cubadda, 2007),
which can often be estimated by reduced-rank regression techniques (Anderson, 1984, 1999). Impos-
ing the common feature restrictions to the stastistical model generally leads to considerable gains in
both forecasting and structural analysis (Vahid and Issler, 2002).

Common features among economic time series are often predicted by economic theory. For ex-
ample, in King et al. (1988) the solution of their macro model implies that output, consumption and
investment have a common trend and a common cycle. The common stochastic trend is generated
by an integrated productivity shock, while the deviation of capital stock from its steady state value
determines the transitional dynamics of output, consumption and investment. Another example is
Campbell (1987), where the saving path implies that disposable income and consumption cointegrate
(Issler and Vahid, 2001). Further, Vahid and Engle (1993) and Issler and Vahid (2001) show that
in models of aggregate consumption, either the existence of “myopic” individuals (Campbell and
Mankiw, 1990) or the excess sensitivity of consumption to current income (Flavin, 1993) imply that
the growth rates of consumption and income share a common cycle. Note that in the consumption
model by Hall (1978) consumption and income share only a common stochastic trend. As another ex-
ample, in the real business cycle model for sectoral output à la Long and Plosser (1983), as in Engle
and Issler (1995), common cycles depend on the propagation mechanisms through the restrictions on
the production function, i.e. technological constraints.

The rest of the paper is organized as follows. In Section 2, after introducing the general notion of
common features and linking it to the reduced-rank regression model, we focus on the various forms
of common cyclical features and their implication in terms of common short-run components. We also
illustrate similarities and differences between these approaches and other popular types of multivariate
time series modelling. Section 3 takes into account the consequences of the presence of common
features for the univariate representation of multiple time series. Section 4 deals with the estimation
methods of the models implied by the various form of common features, distinguishing between the
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cases of small systems and medium-large systems. Finally, Section 5 draws some conclusions.

2. Common Features in Economic Time Series

In this section we first present and discuss the general notion of common features that was originally
proposed by Engle and Kozicki (1993). We stress the link between the presence of common fea-
tures and the multivariate Reduced-Rank Regression model (RRR) that was introduced by Anderson
(1951). A detailed survey on this modelling may be found in Reinsel and Velu (1998). Then we focus
on the common autocorrelation feature and its interplay with the notion of common cycles in the mul-
tivariate Beveridge and Nelson (1981) decomposition. Starting from the seminal work by Vahid and
Engle (1993), we illustrate the various forms of common cyclical features that have been proposed
in the literature and their implication in terms of common unobserved components. Finally, we illus-
trate similarities and differences between the common serial correlation approach and other types of
multivariate time series modelling that are popular in statistics and econometrics, such the dynamic
factor model (see, e.g., Stock and Watson (2011) and the references therein) and the multivariate
autoregressive index model (Reinsel, 1983).

2.1. Common features and the reduced-rank regression model

Engle and Kozicki (1993) considered features that satisfy the following axioms:

1. The vector series Xt has (does not have) the feature if any non-singular linear transformation of Xt

still has (does not have) such feature.

2. If two n-vector time series Y1t and Y2t do not have the feature then (Y1t + Y2t) does not have the
feature.

3. If Yt does not have the feature but Xt has the feature then (Yt + Xt) has the feature.

Then, any dynamic property of the data could be viewed as a special case of feature: for example,
series with stochastic trends satisfies all axioms. As pointed out by Engle and Kozicki (1993) a linear
combination of two series that both have the feature does not necessarily possess the feature. This is
the most interesting case, and to this issue Engle and Kozicki gave particular attention by the following
definition:

Definition 1. A feature, which is present in each of a set of series, is said to be common to those series
when there exists a nonzero linear combination of these series that does not have the feature.

From a statistical point of view, the existence of such linear combinations can be linked to a
common factor representation. Indeed, let Yt be an n-vector time series such that

Yt = B ft + et, (2.1)

where (n− s) common factors ft have the feature and et does not have the feature. Consider a s-vector
δ such that δ

′
B = 0, then δ

′
Yt does not have the feature.

The main idea is that a small number of unobserved components possess a given feature and
transmit it to a larger set of time series. It is then possible to combine such time series in order to
cancel the influence of these unobserved components, thus removing the Common Feature (CF) from
the data.
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In order to illustrate the connection between CF’s and RRR, let us assume that Yt is a n-vector
(weakly) stationary time series such that

Yt = β
′Xt + ϑ

′Zt + εt, (2.2)

where Xt and Zt are, respectively, vectors of k and m stationary time series, β , 0, and εt are i.i.d.
innovations, with E(εt) = 0, E(εtε

′
t) = Σεε (positive definite) and finite fourth moments, that are

independent from both Xt and Zt. Both Xt and Zt may contain (linear functions of) lags of Yt and, for
the sake of simplicity, no deterministic terms are included.

Moreover, assume that:

1. Variables Xt possess the feature of interest whereas variables Zt don’t.

2. There exists a n × s (s < min{n, k}) full-rank matrix δ such that δ′Yt do not possess the feature.
Then, it is said that variables Yt have s CF’s.

In view of the above assumptions we get

δ′Yt = δ
′ϑ′Zt + δ

′εt,

that is equivalent to

δ′β′ = 0⇔ β′ = δ⊥ψ
′, (2.3)

where δ⊥ is a n × (n − s) full-rank matrix such that δ′δ⊥ = 0, and ψ is a k × (n − s) matrix. If n > k,
the matrix β′ has not full column-rank, then there exist (n − k) “trivial” CF’s. Hence, we also assume
that s < n ≤ k, so the matrix ψ has full-rank as well.

In view of Equations (2.2) and (2.3), it is clear that the existence of s CF’s is equivalent to postulate
the following (partial) RRR model for series Yt

Yt = δ⊥ψ
′Xt + ϑ

′Zt + εt. (2.4)

The cofeature matrix δ and the coefficient matrix ψ can be obtained as follows:

1. Obtain the partial regression model

yt = β
′xt + εt,

where yt = Yt − ΣYZΣ
−1
ZZZt, xt = Xt − ΣXZΣ

−1
ZZZt, β = Σ−1

xxΣxy, and

ΣAb = E[At − E(At)]b′t ,

for two generic stationary time series At and bt.

2. Solve the following maximization problem

υ1 = arg max
υ∈Rn

{
υ′

β′Σxxβ︷      ︸︸      ︷
ΣyxΣ

−1
xxΣxyυ

υ′Σyyυ

}
s.t. υ′Σyyυ = 1.
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Then we get the solution υ1 = Σ
−1/2
yy ν1, where ν j ( j = 1, . . . , n) is the eigenvector associated to the

jth largest eigenvalue λ j (λ1 ≥ λ2 ≥ · · · ≥ λn) of the symmetric, semi-positive definite matrix

Σ
− 1

2
yy ΣyxΣ

−1
xxΣxyΣ

− 1
2

yy .

Note that R2(υ′yt |η′xt), where η = βυ, is maximized for υ = υ1 and η = η1 ≡ Σ−1
xxΣxyυ1 since

υ′1Σyyυ1 = 1,

η′1Σxxη1 = ν
′
1Σ
− 1

2
yy ΣyxΣ

−1
xxΣxyΣ

− 1
2

yy ν1 = λ1.

3. Solve the following maximization problem

υ j = arg max
υ∈Rn

{
υ′ΣyxΣ

−1
xxΣxyυ

υ′Σyyυ

}
s.t.

{
υ′jΣyyυ j = 1,
υ′iΣyyυ j = 0,

for i ≤ j = 2, . . . , n.

We get the solution υ j = Σ
−1/2
yy ν j. Note that R2(υ′jyt |η′jxt) = λ j, where η j = Σ

−1
xxΣxyυ j. Moreover,

R2(υ′iyt |η′jxt) = 0 since

η′jΣxyυi = ν
′
jΣ
− 1

2
yy ΣyxΣ

−1
xxΣxyΣ

− 1
2

yy νi,

and νi and ν j are eigenvectors corresponding to different eigenvalues.

4. Since δ′β′ = 0, then λn−s+1 = · · · = λn = 0, and the cofeatures matrix δ is obtained (up to an
identification matrix) as follows

δ = (υn−s+1, . . . , υn).

5. Since λ1 ≥ · · · ≥ λn−s > 0, the coefficient matrix ψ is obtained (up to an identification matrix) as
follows

ψ = (η1, . . . , ηn−s).

6. Finally, the loading matrix δ⊥ is given by the regression coefficients of yt on ψ′xt.

It is worth remarking that the eigenvalue problem

Σ
− 1

2
yy ΣyxΣ

−1
xxΣxyΣ

− 1
2

yy v = vλ

is equivalent to finding the roots of the equation:

Σ−1
yy ΣyxΣ

−1
xxΣxyυ = υλ (2.5)

with the normalization υ′Σyyυ = 1.
One easily recognizes that the solution of the problem (2.5) coincides with the partial Canonical

Correlation Analysis (CCA) between Yt and Xt conditional to Zt (see, e.g., Anderson, 1984).
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2.2. Common trends and common cyclical features

A very well known example of CF is cointegration (see, e.g., Johansen (1996) and the references
therein), where linear combinations of series having nonstationary stochastic trends feature are sta-
tionary.

Let us assume that the elements of a n-vector of time series Ut are integrated of order 1, denoted
as Ut ∼ I(1), and that they admit the following VAR(p) representation:

A(L)Ut = εt, (2.6)

where A(L) = In −
∑p

i=1 AiLi.
When variables Ut are cointegrated of order (1, 1), denoted as Ut ∼ CI(1, 1), we can rewrite the

model (2.6) in the Vector Error Correction Model (VECM) representation:

Γ(L)∆Ut = αγ
′Ut−1 + εt, (2.7)

where Γ(L) = In−
∑p−1

i=1 ΓiLi, and Γi = −
∑p

j=i+1 A j, α and γ are full-rank n×r-matrices (r = 1, . . . , n−1)
and γ′Ut ∼ I(0).

Since ∆Ut is a stationary stochastic process, it admits the following Wold representation:

∆Ut = C(L)εt,

where C(L) = In +
∑∞

i=1 CiLi is such that
∑∞

j=1 j|C j| < ∞.
By expanding C(L) on 1 and integrating both sides of the above equation, we get the multivariate

Beveridge-Nelson representation (BN; Beveridge and Nelson, 1981):

Ut = U0 +C(1)
t−1∑
j=0

εt− j +

t−1∑
j=0

C̃ jεt− j, (2.8)

where C̃i = −
∑

j>i C j for all i.
Since we know from the Engle-Granger representation theorem (Engle and Granger, 1987; Jo-

hansen, 1996) that C(1) = γ⊥(α′⊥Γγ⊥)−1α′⊥ , series Ut share the following (n − r) common stochastic
trends:

τt =

t∑
j=1

α′⊥ε j.

Note the analogy between (2.8) and the common factor representation (2.1); the last term in (2.8)
does not have the feature, while τt has the feature, and the (n − r) common stochastic trends are
removed by the cointegration vectors, since γ′C(1) = 0.

However, detrended economic time series often display clear evidence of comovements (Lucas,
1977), which cannot be due to cointegration, thus suggesting the presence of common cycles. If
this is the case, we expect that there exist linear combinations of cyclical series the are not cyclical.
This Common Cyclical Feature (CCF) (Engle and Kozicki, 1993; Vahid and Engle, 1993) can be
interpreted as short-run equilibrium relationships, similarly to the interpretation of the cointegration
relations as long-run equilibrium.

From the multivariate BN decomposition (2.8), the stochastic cycles of series Ut are:

κt = C̃(L)εt,



Common Feature Analysis of Economic Time Series: An Overview and Recent Developments 421

where C̃(L) =
∑∞

i=0 C̃iLi.
While the presence of cointegration implies reduced-rank restrictions on the VECM parameters

that are responsible for the long-run behavior of series Ut, since γ′τt = 0, the analysis of CCF’s is
instead concerned with reduced-rank restrictions on the short-run VECM parameters (the polynomial
matrix Γ(L) and the adjustment matrix α) that have interesting implications on the cycles κt.

However, differently from cointegration, there is not a unique notion of common short-run com-
ponents. Indeed, also the degree of synchronicity of the common cycle plays a role in the definitions.
Alternative notions of CCF impose differing reduced-rank structures to the VAR. Let us briefly review
various form of CCF starting with the seminal notion proposed by Engle and Kozicki (1993).

Series ∆Ut have s (s < n) serial correlation common features (SCCF) iff there exists an n × s
matrix δS with full column rank such that the VECM (2.7) can be rewritten into the following RRR
model

∆Ut = δS⊥ψ
′
S

(
U′t−1γ,∆U′t−1, . . . ,∆U′t−p+1

)′
+ εt,

where ψS is an (np − n + r) × (n − s) matrix with full column rank (Engle and Kozicki, 1993). Since
δ′S∆Ut = δ

′
S εt, there exist s linear combinations of series ∆Ut that are unpredictable from the past, i.e.

they are innovation processes. Since δ′S κt = 0, there exist (n − s) common cycles in series Ut (Vahid
and Engle, 1993) that are perfectly synchronized, as a results the impulse responses functions are
exactly collinear. However, one observes that due to technical reasons (e.g., seasonal adjustment) as
well as economic reasons (e.g., adjustment costs, labor market rigidities), the hypothesis underlying
SCCF is sometimes too strong, since SCCF is not able to detect the existence of non-contemporaneous
cyclical comovements (Ericsson, 1993). Then, some less restrictive variants of the SCCF have been
introduced in the literature, which we will review in turn.

Cubadda and Hecq (2001) propose the notion of polynomial serial correlation common features
(PSCCF) as a measure of non-contemporaneous cyclical comovements. Non-synchronous common
cycles arises, for example, in economic model of consumption with several types of consumer goods
as, i.a., in Vahid and Engle (1997) and Schleicher (2007); it is shown that the maximization problem of
the representative agent implies a unsynchronized common cycle (codependent cycle) in the consumer
goods vector.

By definition, series ∆Ut have s PSCCF’s iff there exists an n × s matrix δP with full column rank
such that δ′PΓ1 , 0, and the VECM (2.7) can be rewritten into the following partial RRR model

∆Ut = Γ1∆Ut−1 + δP⊥ψ
′
P

(
∆U′t−2, . . . ,∆U′t−p+1,U

′
t−1γ

)′
+ εt,

where ψP is an (np − 2n + r) × (n − s) matrix with full column rank (Cubadda and Hecq, 2001).
In order to interpret the notion of PSCCF, Cubadda and Hecq (2001) show that there exists a

first-order polynomial matrix δ(L) = δP − Γ′1δPL such that

δ(L)′∆Ut = δ
′
Pεt.

Hence, PSCCF requires that there exists a first-order polynomial matrix δ(L) such that δ(L)′∆Ut is
white noise. The presence of PSCCF has an interesting implication for the BN cycles of series Ut:
indeed, since δ(L)′κt = δ

′
1C(1)εt, the same PSCCF relationships cancel the dependence from the past

of both the first differences and cycles of series Ut.
In the above definitions of CCF, the number of SCCF’s or PSCCF’s, s, cannot exceed the number

of common trends (n− r). In order to remove this restrictions, Hecq et al. (2006) proposed the notion
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of weak form of SCCF (WF): series ∆Ut have s WF’s iff there exists an n × s matrix δW with full
column rank such that δ′Wα , 0, and the VECM in (2.7) can be rewritten into the following partial
RRR model

∆Ut = αγ
′Ut−1 + δW⊥ψ

′
W

(
∆U′t−1, . . . ,∆U′t−p+1

)′
+ εt,

where ψW is an (np − n) × (n − s) matrix with full column rank (Hecq et al., 2006).
In order to uncover interesting implications of the WF for the BN cycle, Cubadda (2007) shows

that there exists a first-order polynomial matrix δW (L) ≡ δW − (γα′ + In)δW L such that

δW (L)′Ut = δ
′
Wεt.

As consequence, since δW (L)′κt = δ
′
W (In −C(1))εt, the same WF relationships cancel the dependence

from the past of both the cycles and linearly detrended levels of series Ut.
A limitations of the above methods for cyclical features analysis is that they cannot handle the

possible coexistence of differing types of reduced-rank restrictions in the same vector. In order to
overcome this limitation, Cubadda (2007) introduced the notion of weak form of PSCCF (WFP),
which encompasses most of the existing formulations: series ∆Ut have s WFP’s iff there exists an
n × s matrix δF with full column rank such that δ′Fα , 0, δ′FΓ1 , 0, and the VECM in (2.7) can be
rewritten into the following partial RRR model

∆Ut = αγ
′Ut−1 + Γ1∆Ut−1 + δF⊥ψ

′
F

(
∆U′t−2, . . . ,∆U′t−p+1

)′
+ εt,

where ψF is an (np − 2n) × (n − s) matrix with full column rank.
The WFP requires the existence of a second-order polynomial matrix δF(L) ≡ δF − (γα′ + In +

Γ′1)δF L + Γ′1δF L2 such that

δF(L)′Ut = δ
′
Fεt.

An important implication of the WFP is that the polynomial matrix δF(L) transforms the BN cycles
κt into a process with shorter memory, since δF(L)′κt ∼ VMA(1).

The CCF analysis was extended even to the case of series having different forms of stationarity
than I(1)-ness. In particular, Cubadda (1999, 2001) explored the presence of common cycles in sea-
sonal time series that are also integrated at (a subset of) the seasonal frequencies, whereas Paruolo
(2006) focused on the case of I(2) systems.

Franchi and Paruolo (2011) offered a comprehensive theoretical analysis of the conditions of ex-
istence of the various form of CCF’s and of the characterization of the CCF relations in I(0), I(1) and
I(2) systems.

2.3. Relations with alternative multivariate time series models

It is interesting to analyze similarities and differences of the CF approach with other popular multi-
variate time models. For the sake of simplicity, we will refer within this subsection to the basic SCCF
model, which can be formulated as

Yt = δ⊥ψ
′︸︷︷︸

β′

(
Y ′t−1, . . . , Y

′
t−p+1

)′︸                ︷︷                ︸
Xt

+ εt, (2.9)

where series Yt are assumed to be I(0).
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Ahn and Reinsel (1988) proposed a variant of the basic RRR model that is called Nested Reduced-
Rank AR model (NRRAR). The main assumption is that the VAR coefficient matrices have reduced
ranks, which are nested each other: Rank(A j) ⊃ Rank(A j + 1) for j = 1, . . . , p − 1. Then the NRRAR
reads

Yt =

p∑
j=1

ϱ jψ
′
jYt− j + εt. (2.10)

The NRRAR is a very general statistical model since it is easy to see that both the SCCF and
its polynomial extensions are particular cases of Equation (2.10). However, the interpretation of the
NRRAR in terms of common short-run components is more involved.

A different modelling, which is also endowed with a reduced-rank structure, is the Multivariate
Autoregressive Index model (MAI) as originally proposed by Reinsel (1983). The basic version of
the MAI reads

Yt =

p∑
j=1

ϕ jξ
′Yt− j + εt, (2.11)

where ξ is n × q (q < n) full-rank matrix, and ϕ j is is n × q matrix for j = 1, . . . , p. The linear
combinations It = ξ

′Yt are called the indexes.
Notice that the regression coefficient matrix implied by the MAI has the following structure

β′ =
[
ϕ1ξ

′, . . . , ϕpξ
′
]
,

which implies that β′ξ⊥ = 0. Hence, whereas SCCF imposes a common left null space to the VAR
coefficient matrices, MAI imposes a common right null space to those matrices.

Notwithstanding both SCCF and MAI have a reduced-rank structure, the mathematical properties
of these two modelling approaches are only partially similar. Indeed, although the interpretation of
the canonical variates ψ′Xt and the index lags [ξ′Yt−1, . . . , ξ

′Yt−p] is analogous, since both of them
represent the relevant predictors of series Yt, the same statement cannot be applied to the linear com-
binations δ′Yt and ξ′⊥Yt. The former are in fact innovations w.r.t. the past, whereas the latter are not,
as one can easily observe by premultiplying both sides of Equation (2.11) by the matrix ξ′⊥.

A specific property of the MAI is that the indexes themselves follow a VAR(p) process. Indeed,
if we premultiply both sides of Equation (2.11) by the matrix ξ′ we get

It =

p∑
j=1

ξ′ϕ jIt− j + ξ
′εt, (2.12)

whereas linear combinations of series generated by an unrestricted VAR(p) model generally follow a
VARMA process, see e.g. Cubadda et al. (2009) and the references therein. It is easy to see that a
similar implication does not hold for the canonical variates δ′⊥Yt.

A different approach that gained large popularity is the Dynamic Factor Model (DFM), see e.g.
Stock and Watson (2011) and the references therein. As shown by Stock and Watson (2005), the DFM
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can be represented in the VAR form as follows

D(L)Yt = Λ

p∑
j=1

Φ jFt− j + εYt, (2.13)

Ft =

p∑
j=1

Φ jFt− j + εFt, (2.14)

where D(L) is a diagonal finite-order n×n polynomial matrix, Λ is a n×q matrix, Φ j is is n×q matrix
for j = 1, . . . , p, Ft is a q-vector of unobserved factors, and (ε′Yt, ε

′
Ft)
′ are innovations w.r.t. the past

of both Yt and Ft.
A key difference between the DFM and the previously considered approaches is that the former

requires for inferential purposes that the number of series n is large compared to the sample size T .
Indeed, as shown by Bai and Ng (2006), if the factors Ft are obtained through principal component
methods, the estimated factors can be treated as observed for statistical inference on Equation (2.13)
provided that n→ ∞ and T 1/2/n→ 0 as T → ∞.

Apart from the different asymptotic frameworks, the DFM and the MAI have some degree of sim-
ilarity in their mathematical formulations. Indeed, Equation (2.12) is entirely analogous to Equation
(2.14), and Equation (2.13) can be seen as generalization of Equation (2.11) such that each series is
endowed with an individual AR structure.

It is less obvious how to relate the DFM to the SCCF. One may notice that in the particular case
that D(L) = In, series Yt in Equation (2.13) have indeed the SCCF with a matrix δ that is equal to Λ⊥.
However, lags of the individual series are typically included in empirical applications of the DFM.

3. Common Features and Univariate Time Series Models

It is well known that each series generated by a VAR process admits a univariate ARIMA representa-
tion, see e.g. Zellner and Palm (1974). However, the VAR models that are typically used in macroe-
conomic analysis would imply highly non parsimonious ARIMA models for individual time-series,
whereas low order ARIMA models are empirically appropriate. This is the so-called “autoregressiv-
ity paradox”. Cubadda et al. (2008, 2009) argued that the presence of common cyclical features can
provide a solution to this paradox.

Indeed, let us assume that the n series of interest are generated by the following VAR(p) model

A(L)Yt = εt.

The so-called Final Equations (FEs) of series Yt can be obtained by premultiplying both sides of the
VAR equation by A(L)ad j, the adjoint matrix associated with A(L):

det[A(L)]Yt = A(L)ad jεt,

where det[A(L)] is the determinant of the polynomial matrix A(L).
Since det[A(L)] is a polynomial or order np and A(L)ad j is matrix polynomial of order (n − 1)p,

it follows that elements of Yt should admit a univariate ARMA(np, (n − 1)p) representation. Hence,
a typical VAR model with n = 5 and p = 4 would imply that each individual variable follows an
ARMA(20, 16) model, which is at odds with the empirical evidence.
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Table 1: Maximum ARIMA orders of univariate series generated by an n-dimensional VAR(p) with s cofeature
restrictions

Model AR order I(d) MA order
I(0)VAR np 0 (n − 1)p

SCCF (n − s)p 0 (n − s)p
PSCCF (n − s)p + s 0 (n − s)p + (s − 1)

CI(1, 1) VAR n(p − 1) + r 1 (n − 1)(p − 1) + r
SCCF (n − s)(p − 1) + r 1 (n − s)(p − 1) + r

PSCCF (n − s)(p − 1) + r + s 1 (n − s)(p − 1) + r + s − 1
WF (n − s)(p − 1) + r 1 (n − s)(p − 1) + r

SCCF = serial correlation common feature; PSCCF = polynomial SCCF; WF = weak form.

Following Cubadda et al. (2009), let us assume that n = 3 series are generated by the following
VAR(1):

Yt =

 0.5 −0.5 0.5
0.25 −0.25 + ω 0.25
0.5 −0.5 0.5 + ω

 Yt−1 + εt,

where Yt = (y1t, y2t, y3t)′.
For the above VAR, the FEs are:

det[A(L)] = 1 − 0.5L3ω2 − (0.75 + 2ω)L +
(
1.25ω + ω2

)
L2,

such that individual series follow ARMA(3, 2) models.
However, if ω = 0, the VAR has reduced-rank structure

Yt =

 0.5
0.25
0.5

 [ 1 −1 1
]

Yt−1 + εt,

which produces the FEs:

(1 − 0.75L)Yt = εt +

 −0.25 −0.5
0.25 −1
0.5 −0.5


[

1 0 −1
0 1 −0.5

]
εt−1.

This implies that the univariate representations are parsimonious ARMA(1, 1) models with the
same autoregressive parameter and cross-correlated VMA errors having a factor structure.

More generally, Table 1 summaries the reduction of the individual ARMA orders due to common
features restrictions.

As one can see, the existence of CCF’s provides a possible, economically meaningful, solution of
the autoregressivity paradox. Notice that Table 1 provides the maxima ARIMA orders under CCF’s
restrictions. However, the orders can be even smaller due to additional restrictions on the VAR pa-
rameters, such as block-diagonal or block-triangular structures.

The presence of short-run comovements has also consequences for the VMA part of FEs. Cubadda
et al. (2009) show that in a stationary VAR(p), the existence of s SCCF relationships implies that in
the FEs the VMA coefficient matrices associated with degrees strictly larger than (n − s − 1)p have a
common right null space that is spanned by δ⊥. Hence, it is possible to reduce the order of the VMA
component to a degree of at most (n − s − 1)p instead of (n − s)p . In particular, when n − 1 = s, the
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FEs follow a model that is popular in the macro-panel literature: an homogeneous AR component and
cross-correlated VMA errors having a factor structure.

Cubadda et al. (2009) illustrate this point with an empirical example. They consider the industrial
production indexes of Canada and the US. Since no cointegration in log levels is found, a VAR(1) in
first differences seems appropriate. The estimation by OLS delivers (standard errors in brackets) ̂∆ ln US t

∆̂ ln CAt

 =
 0.333

(0.088)
0.273
(0.079)

0.265
(0.102)

0.360
(0.092)


[
∆ ln US t−1
∆ ln CAt−1

]
.

Theoretical FEs orders imply an ARMA(2, 1) processes. However, SCCF test statistics is in favor
of s = 1 (p-value = 0.31), with the estimated SCCF relationship (∆ ln US t − 1.05∆ ln CAt). Statistical
identification of the univariate models provides the following ARIMA(1,1,0) structures

̂∆ ln US t = 0.003
(0.001)

+ 0.554
(0.062)

∆ ln US t−1,

∆̂ ln CAt = 0.004
(0.001)

+ 0.533
(0.064)

∆ ln CAt−1.

As expected, the AR coefficients are very similar. Moreover, since the estimated cofeature vector δ̂′
is close to (1 : −1), and the VAR residuals have similar variances and a correlation around 0.65, the
factor structure of the VMA part of the FEs may explain why the MA(1) components are empirically
negligible.

4. Statistical Analysis

In this section we first illustrate how to estimate the RRR models implied by the various form of CCF’s
when the system dimension is small. In this case, a Maximum Likelihood (ML) under the Gaussianity
assumption is generally employed. However, ML methods break down when the number of regressors
becomes large compared to the typical sample size in macroeconomic datasets (100 ≤ T ≤ 200).
The problem is due to the need of inverting large covariance matrices. Hence, we will review some
recent proposals for estimating VAR model with reduced-rank restrictions when the number of series
n exceeds 20.

4.1. Maximum likelihood inference of small-scale multivariate models

Under the assumptions that series Yt, Xt and Zt are I(0) and that the innovations εt are Gaussian, ML
inference on model (2.2) is provided by partial CCA of series Yt and Xt conditional on Zt, denoted by
CanCor{Yt, Xt | Zt}, see i.a. Anderson (1999, 2002).

In particular, the LR test statistic on the existence of s CF’s is:

LR(s) = −T
n∑

i=n−s+1

ln
(
1 − λ̂i

)
, (4.1)

where λ̂i is the ith largest eigenvalue of the sample matrix Σ̂−1/2
yy Σ̂yxΣ̂

−1
xx Σ̂xyΣ̂

−1/2
yy . Under the null hy-

pothesis that s CF’s are present, the test statistic (4.1) is asymptotically distributed as

LR(s)
d→ χ2[s(k − n + s)]. (4.2)
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Table 2: Canonical correlations and CCF’s

Model X′t Z′t
SCCF

(
∆U′t−1, . . . ,∆U′t−p+1,U

′
t−1γ

)
WF

(
∆U′t−1, . . . ,∆U′t−p+1

)
U′t−1γ

PSCCF
(
∆U′t−2, . . . ,∆U′t−p+1,U

′
t−1γ

)′
∆U′t−1

WFP
(
∆U′t−2, . . . ,∆U′t−p+1

) (
D′t ,∆U′t−1,U

′
t−1γ

)
SCCF = serial correlation common feature; WF = weak form; PSCCF = polynomial SCCF; WFP = weak form of PSCCF.

The ML estimator of the cofeatures matrix δ is obtained (up to an identification matrix) as follows

δ̂ =
(̂
υn−s+1, . . . , υ̂n

)
,

where υ̂ j = Σ̂
−1/2
yy ν̂ j and ν̂ j ( j = 1, . . . , n) is the eigenvector associated to the jth largest sample

eigenvalue λ̂ j.
The ML estimator of the coefficient matrix ψ is obtained (up to an identification matrix) as follows

ψ̂ =
(̂
η1, . . . , η̂n−s

)
,

where η̂ j ≡ Σ̂−1
xx Σ̂xyυ̂ j.

The ML estimator of the loading matrix δ⊥ is finally obtained by the regression coefficients of yt

on ψ̂′xt.

The degrees of freedom of the test statistic (4.1) are obtained as follows. Under the alternative
hypothesis, the matrix β is composed by n × k elements. Under the null hypothesis, we have that

β = ψ︸︷︷︸
k×(n−s)

(
δ⊥,1︸︷︷︸

(n−s)×(n−s)

: δ′⊥,2︸︷︷︸
(n−s)×s

)
.

Without loss of generality, we assume that δ⊥,1 has full-rank. Then we can write

β = ψδ⊥,1δ
−1
⊥,1δ

′
⊥ = ψ̃δ̃

′
⊥,

where δ̃′⊥ = (Is, δ̃
′
⊥,2). Hence, the matrix β is composed by (n − s) × (s + k) elements. It follows that

under the null hypothesis s(k − n + s) restrictions are imposed.
In order to conduct inference on the various forms of CCF’s, a two-step procedure is usually em-

ployed (see, i.a., Vahid and Engle (1993), Ahn (1997), Cubadda and Hecq (2001), Hecq et al. (2006),
and Cubadda (2007)). First, the cointegrating vectors are estimated by ML on the VECM without
imposing any CCF restrictions. This can be done by using the procedures suggested in Johansen
(1988) or Ahn and Reinsel (1990). Second, the cointegration matrix γ is fixed to its ML estimate, and
inference on CCF’s is carried on. Since the ML estimator of the cointegation matrix γ converges at
rate T irrespective of the existence of constraints in the short-run polynomial matrix Γ(L) (see, e.g.,
Johansen (1996)), the asymptotic distribution of the test statistics (4.1) remains the same as in (4.2).

Hence, ML inference on the various forms of common features is obtained by solving CanCor{∆Ut,
Xt | Zt} for proper choices of the variables Xt and Zt as detailed in Table 2.

For each of the models in Table 2, under the null that s common features of a given form exist, the
test statistic (4.1) is asymptotically distributed as a χ2(d) as detailed in Table 3 (see, i.a., Velu et al.
(1986), Anderson (2002)).
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Table 3: Tests for common features

Model Degress of freedom d
SCCF s × (n(p − 2) + r + s)
WF s × (n(p − 2) + s)

PSCCF s × (n(p − 3) + r + s)
WFP s × (n(p − 3) + s)

SCCF = serial correlation common feature; WF = weak form; PSCCF = polynomial SCCF; WFP = weak form of PSCCF.

Table 4: Estimators of the common features vectors and RRR coefficients

Model (̂η1, . . . , η̂s) (̂υs+1, . . . , υ̂n)
SCCF δ̂S ψ̂S

WF δ̂W ψ̂W

PSCCF δ̂P ψ̂P

WFP δ̂F ψ̂F

SCCF = serial correlation common feature; WF = weak form; PSCCF = polynomial SCCF; WFP = weak form of PSCCF.

Moreover, optimal estimates of both the common features vectors and (partial) RRR coefficients
are then obtained as described in Table 4.

Finally, the remaining parameters of the various RRR models are estimated by OLS after fixing
the matrices ψ’s to their estimated values.

Notice that the two step procedures previously illustrated do not maximize the Gaussian likeli-
hood, although the estimated parameters have the same distribution as the optimal ones. Centoni et
al. (2007) suggested an iterative algorithm for computing the ML estimates. The main idea is to
switch between the estimation of the cointegration matrix γ having fixed the short-run parameters and
the estimation of the short-run parameters having fixed the cointegration matrix.

The merits of imposing CCF restrictions in VAR models are investigated in several Monte Carlo
studies. Vahid and Issler (2002) documented the advantages of simultaneously choosing the order p
of the VAR model and the number s of SCCF restrictions for both forecasting and structural analysis.
Athanasopoulos et al. (2011) extended the analysis to cointegrated systems. They proposed to simul-
taneously choose the cointegration rank r with p and s. Using the switching algorithm in Centoni et
al. (2007) for estimation and a novel criterion for model identification, significant gains in forecasting
accuracy are found both in simulations and empirical applications.

4.2. Methods for medium-large dimensional time series

The ML approach discussed so far is typically applied to small scale multivariate models, i.e. in
situations where the number of series n is not larger than five and the sample size T rarely exceeds
200. However, it is of obvious interest to apply the common features framework to medium-large
VAR models, i.e. when the n ranges from 10 to 40. Indeed, Koop (2013) i.a. shows that medium-
large VAR’s outperform small-scales models in forecasting the key US macroeconomic variables.
However, it is clear that when n is large ML inference suffers of the curse of dimensionality problem.
Indeed, Cubadda and Hecq (2011) show by simulations that in a VAR(1) with n = 25 variables the
LR test exhibits severe size distortions even with a large sample size as T = 600.

The main reason why ML inference performs poorly in high-dimensional systems is that the in-
version of large variance-covariance matrices is required. Hence, most of methods that have been
proposed to use RRR with large n try to “regularize” these covariance matrices in different ways.

The first attempt in this direction can be dated back to Vinod (1976), who proposed the canonical
ridge model. When applied to the SCCF modelling, this approach would require to substitute the
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eigenvalues and eigenvectors that are used for CCA with those of the matrix(̂
Σyy + κyIn

)−1
Σ̂yx

(̂
Σxx + κxInp

)−1
Σ̂xy, (4.3)

where κy and κx are two positive scalars, Σ̂yy and Σ̂xx are respectively the sample variance-covariance
of series Yt and Xt in Equation (2.9), and Σ̂xy is the matrix of the covariances between the elements of
Yt and Xt. It is clear that the matrices that appear in parentheses in Equation (4.3) are invertible even
when T > np because the positive quantities κy and κx are respectively added to all the eigenvalues
of Σ̂yy and Σ̂xx. Vinod (1976) proposed various criteria to choose the values for κy and κx in empirical
applications. Notwithstanding its potential interest for high-dimensional time series analysis, to the
best of our knowledge the canonical ridge approach has never been applied to either SCCF or other
multivariate dynamic models.

Cubadda and Hecq (2011) suggested a Partial Least Squares (PLS) approach to test and impose
the SCCF restriction to a VAR even when CCA is not feasible due a lack of degrees of freedom. PLS
are a family of multivariate techniques with the aim of maximizing the covariance between linear
combinations of two variable sets, see, e.g. Rosipal and Krämer (2006) for a detailed survey. The
idea is to consistently estimate the SCCF matrix δ as the eigenvectors associated with the s smallest
eigenvalues of the matrix

D̂−1
yy Σ̂yxD̂−1

xx Σ̂xy,

where Dyy and Dxx are diagonal matrices having the diagonal elements of, respectively, Σyy and Σxx.
Since PLS require to invert diagonal matrices only, this method can provide estimates of δ (up to an
identification matrix) that are less disperse and more numerically stable than those coming from CCA
when the dimension of Xt approaches the sample size T .

In order to consistently estimate the factor weights ψ, it is necessary to take the additional assump-
tion that the columns of the matrix ψS are equal to (n − s) distinct eigenvectors of the matrix D−1

xxΣxx.
Then we get

D−1
xxΣxyD−1

yy Σyx = ψS Vψδ
′
S⊥D−1

yy Σyx,

where Vψ is the diagonal matrix of the (n− s) eigenvalues of the matrix D−1
xxΣxx that are associated with

the eigenvectors ψS , which implies that the matrix ψS lies in the space generated by the eigenvectors
associated with the positive eigenvalues of the matrix D−1

xxΣxyD−1
yy Σyx.

In order to detect the presence of SCCF in large dimensional systems, Cubadda and Hecq (2011)
proposed to replace the condition that a linear combination of variables must be orthogonal to the
past, namely

E
(
δ′Yt |Xt−1

)
= 0

with the one of absence of autocorrelation, namely

E
(
δ′iYt

∣∣∣ [Y ′t−1δi, . . . ,Y ′t−pδi

]′)
= 0, i = 1, 2, . . . , s, (4.4)

where δ = [δ1, . . . , δs]. This drastically decreases the number of restrictions to be imposed under
the null hypothesis, thus making a test for (an implication of) SCCF feasible even when CCA is not.
Condition (4.4) can be verified by means of univariate tests for no serial correlation of each δ′i∆Yt

having fixed δ to its PLS estimate.
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Having controlled for the overall size of the test when different values of s are involved, Cubadda
and Hecq (2011) show by simulations that the proposed testing procedure has negligible size distor-
tions and remarkable power with n = 9, 25 and small sample size as T = 50.

Carriero et al. (2011) proposed a Bayesian approach to estimate large VAR’s with reduced-rank
restrictions. In particular, the Reduced Rank Posterior (RRP) method goes as follows. First, estimate
an unrestricted VAR by implementing the Kadiyala and Karlsson (1997) version of the Minnesota
prior (see, i.a., Litterman, 1986). where the estimates of elements of β in (2.9) are shrunk towards
zeros. This approach is computationally convenient since the posterior mean of β can be obtained
by OLS on a system augmented with proper sets of dummy variables. Second, compute the singular
value decomposition of the posterior mean of β and obtain a reduced-rank approximation of it by
retaining the (n − s) largest eigenvalues and the associated vectors only.

Carriero et al. (2011) compare the RRP with several alternatives, including a more elaborated
Bayesian Reduced-Rank VAR (BRR) method, in a forecasting exercise where the reference model is a
VAR(1) for n = 52 variables and a rolling window of 120 monthly observations is used for estimation.
The empirical results show that BRR and RRP outperform the competitors for intermediate and long
forecasting horizons, whereas univariate AR models are hard to beat for shorter horizons.

Bernardini and Cubadda (2015) proposed to regularize the estimate of the autocorrelation matrix
prior on performing CCA. In particular, they suggest to use, in place of the natural estimator, a proper
shrinkage estimator of the covariance matrix of wt = [y′t , x

′
t ]
′:

Σ̃ww = ρD̂ww + (1 − ρ)̂Σww,

where ρ ∈ [0, 1]. Then a Regularized version of CCA (RCCA) can be obtained by solving the eigen-
vector equation

Σ̃−1
xx Σ̃xyΣ̃

−1
yy Σ̃yxη̃ = λ̃η̃.

Notice that when ρ = 1 the full-rank regression case coincides with n univariate white noises,
whereas when ρ = 0 one gets the usual CCA solution. Hence, RCCA can be seen as a frequentist
analogous of the Kadiyala-Karlsson version of the Minnesota prior, as it shrinks elements of β towards
zero as well. In order to choose the value of ρ, Bernardini and Cubadda (2015) follow the approach of
Ledoit and Wolf (2003), which requires to minimize a risk function based on the Frobenious norm of
the difference between the shrinkage estimator Σ̃ww and the covariance matrix Σww. In particular, they
provide a feasible estimator of the optimal ρ to the case that data are generated by a vector stationary
process. Remarkably, such estimator converges to zero at rate T , hence RCCA is asymptotically
equivalent to CCA.

Bernardini and Cubadda (2015) document, both by simulations and empirical applications, that
RCCA improves both forecasting and estimation of structural parameters over traditional medium-size
(n = 20 and p = 2) macroeconometric methods.

5. Conclusions

The main goal of this survey was to create a “common thread” between various topics, related to
each other by the idea of modelling various forms of comovements that are typically observed in eco-
nomic time series and often predicted by economic theory. From a statistical point of view, common
features imply a reduction to more parsimonious structure such as common factor representation: a
small number of unobserved components possesses a given feature and transmits it to a larger set of
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economic time series. As we have seen, RRR is often the solution to the inferential problem. Due
to the large amount of literature on common features, we focused the discussion on common cyclical
features. However, we have tried to take into account recent developments as the implications of com-
mon features for univariate time series models and the statistical issues that arise when the number of
the variables is fairly large.

The main drawback of the methods discussed in this paper is that different features are evaluated
separately; one important exception is the unifying framework for analyzing common cyclical fea-
tures that we discussed in Subsection 2.2. Then, a major goal ahead is to develop estimation and
testing procedures that allow for the joint identification of several forms of common features using an
integrated statistical approach.

Another challenge for future research is the extension of common cycle analysis to nonstationary
medium-large dimensional systems. Indeed, all the methods that are presented in Subsection 4.2
require that series are individually stationarized prior to the multivariate analysis. This is clearly a
methodological limitation since possible cointegration relations are ignored. Hence, it is still missing
a statistical modelling that allows for the simultaneous analysis of common trends and cycles when
the number of time series is not small.

Acknowledgement

We wish to thank an associate editor as well as two anonymous referees for helpful comments. The
usual disclaimers apply.

References

Ahn, S. K. (1997). Inference of vector autoregressive models with cointegration and scalar compo-
nents, Journal of the American Statistical Association, 92, 350–356.

Ahn, S. K. and Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for multiple time-
series, Journal of the American Statistical Association, 83, 849–856.

Ahn, S. K. and Reinsel, G. C. (1990). Estimation for partially nonstationary multivariate autoregres-
sive models, Journal of the American Statistical Association, 85, 813–823.

Anderson, H. M. and Vahid, F. (1998). Testing multiple equation systems for common nonlinear
components, Journal of Econometrics, 84, 1–36.

Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate nor-
mal distributions, Annals of Mathematical Statistics, 22, 327–351.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, (2nd ed.), John Wiley &
Sons, New York.

Anderson, T. W. (1999). Asymptotic theory for canonical correlation analysis, Journal of Multivariate
Analysis, 70, 1–29.

Anderson, T. W. (2002). Canonical correlation analysis and reduced rank regression in autoregressive
models, Annals of Statistics, 30, 1134–1154.

Athanasopoulos, G., de Carvalho Guillén, O. T., Issler, J. V. and Vahid, F. (2011). Model selection,
estimation and forecasting in VAR models with short-run and long-run restrictions, Journal of
Econometrics, 164, 116–129.

Bai, J. and Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-
augmented regressions, Econometrica, 74, 1133–1150.

Bernardini, E. and Cubadda, G. (2015). Macroeconomic forecasting and structural analysis through
regularized reduced-rank regression, International Journal of Forecasting, 31, 682–691.



432 Marco Centoni, Gianluca Cubadda

Beveridge, S. and Nelson, C. R. (1981). A new apporach to decomposition of economic time se-
ries into permanent and transitory component with particular attention to measurement of the
‘business cycle’, Journal of Monetary Economics, 7, 151–174.

Bierens, H. J. (2000). Nonparametric nonlinear cotrending analysis, with an application to interest
and inflation in the United States, Journal of Business & Economic Statistics, 18, 323–337.

Campbell, J. Y. (1987). Does saving anticipate declining labor income - An alternative test of the
permanent income hypothesis, Econometrica, 55, 1249–1273.

Campbell, J. Y. and Mankiw, N. G. (1990). Permanent income, current income, and consumption,
Journal of Business & Economic Statistics, 8, 265–279.

Carriero, A., Kapetanios, G. and Marcellino, M. (2011). Forecasting large datasets with Bayesian
reduced rank multivariate models, Journal of Applied Econometrics, 26, 735–761.

Centoni, M., Cubadda, G. and Hecq, A. (2007). Common shocks, common dynamics, and the inter-
national business cycle, Economic Modelling, 24, 149–166.

Chapman, D. A. and Ogaki, M. (1993). Cotrending and the stationarity of the real interest rate,
Economics Letters, 42, 133–138.

Cubadda, G. (1999). Common cycles in seasonal non-stationary time series, Journal of Applied
Econometrics, 14, 273–291.

Cubadda, G. (2001). Common features in time series with both deterministic and stochastic season-
ality, Econometric Reviews, 20, 201–216.

Cubadda, G. (2007). A unifying framework for analyzing common cyclical features in cointegrated
time series, Computational Statistics & Data Analysis, 52, 896–906.

Cubadda, G. and Hecq, A. (2001). On non-contemporaneous short-run co-movements, Economics
Letters, 73, 389–397.

Cubadda, G. and Hecq, A. (2011). Testing for common autocorrelation in data-rich environments,
Journal of Forecasting, 30, 325–335.

Cubadda, G., Hecq, A. and Palm, F. C. (2008). Macro-panels and reality, Economics Letters, 99,
537–540.

Cubadda, G., Hecq, A. and Palm, F. C. (2009). Studying co-movements in large multivariate data
prior to multivariate modelling, Journal of Econometrics, 148, 25–35.

Engle, R. F. and Granger, C. W. (1987). Co-integration and error correction: Representation, estima-
tion and testing, Econometrica, 55, 251–276.

Engle, R. F. and Issler, J. V. (1995). Estimating common sectoral cycles, Journal of Monetary Eco-
nomics, 35, 83–113.

Engle, R. F. and Kozicki, S. (1993). Testing for common features, Journal of Business & Economic
Statistics, 11, 369–380.

Engle, R. F. and Marcucci, J. (2006). A long-run pure variance common features model for the
common volatilities of the Dow Jones, Journal of Econometrics, 132, 7–42.

Engle, R. F. and Susmel, R. (1993). Common volatility in international equity markets, Journal of
Business & Economic Statistics, 11, 167–176.

Ericsson, N. R. (1993). Comment: Testing for common features, Journal of Business & Economic
Statistics, 11, 380–383.

Flavin, M. (1993). The excess smoothness of consumption - identification and interpretation, Review
of Economic Studies, 60, 651–666.

Franchi, M. and Paruolo, P. (2011). A characterization of vector autoregressive processes with com-
mon cyclical features, Journal of Econometrics, 163, 105–117.

Gourieroux, C. S. and Peaucelle, I. (1988). Detecting a long run relationship (with an application to



Common Feature Analysis of Economic Time Series: An Overview and Recent Developments 433

the p.p.p. hypothesis), Centre d’études prospectives d’économie mathématique appliquées à la
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