• Title/Summary/Keyword: unity power factor

Search Result 326, Processing Time 0.815 seconds

New Group of Magnetic Coupled Power Factor Correction Converter with Single-Stage and Single-Switch (새로운 단일전력단 및 단일스위치 방식의 자기결합형 역률개선 컨버터 그룹)

  • Moon, Gun-Woo;Choo, Jin-Boo;Roh, Chung-Wook;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2240-2242
    • /
    • 1997
  • A new group of magnetic coupled high power factor converter with a single-switch /single-stage is proposed. The proposed converter gives the good power factor correction, low current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC555-2 requirements are met satisfactorily with nearly unity power factor.

  • PDF

A New Single Stage AC/DC Converter with High Power Factor and High Efficiency (고역률과 고효율을 갖는 새로운 단일 전력단 AC/DC 컨버터)

  • Lee, Jun-Young;Moon, Gun-Woo;Jung, Young-Suk;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.582-584
    • /
    • 1996
  • A new single stage AC/DC converter with a high power factor is proposed. The proposed converter gives good power factor correction, low current harmonic distortions, and tight output regulations. This converter also has an high efficiency by employing Active-clamp method and synchronous rectifiers. To verify performances of the proposed converter, 90W-converter is designed. This prototype meets the IEC555-2 requirements satisfactorily with nearly unity power factor.

  • PDF

Novel Reset Winding Clamped Forward Converter with Transformer Voltage Feedback Technique for Power Factor Correction (변압기 전압 되먹임방식을 이용한 고역률의 리셋권선을 갖는 새로운 포워드 컨버터)

  • Moon, Gun-Woo;Roh, Chung-Wook;Jung, Young-Seok;Lee, Jun-Young;Youn, Myung-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.348-350
    • /
    • 1996
  • A new reset winding clamped forward converter with transformer voltage feedback technique for power factor correction with a single-switch/single-stage is proposed. The proposed converter gives the good power factor correction, low current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC555-2 requirements are met satisfactorily with nearly unity power factor.

  • PDF

Reactive Current Control Method for Variable Source Voltage of AC-DC PWM Converter (무효전류 제어기법에 의한 전원전압 보상형 컨버어터의 구성에 관한 연구)

  • Kim, Byoung-Soo;Lee, Sang-Hun;Choi, Cheol;Kim, Cheul-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.336-341
    • /
    • 1999
  • In this paper a control method to compensate the fluctuation in source voltage by using reactive current is presented. When the source voltage is changed within $\pm$10[%] range, the unit power factor is carried out. Otherwise, the converter is controlled by variable power factor. By using above control, the converter input voltage is maintained constantly. And then it was certified by simulation with the ACSL and several experiments.

  • PDF

A Novel Single Phase Soft Switched PFC Converter

  • Altintas, Nihan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1592-1601
    • /
    • 2014
  • In this study, a novel single phase soft switched power factor correction (PFC) converter is developed with active snubber cell. The active snubber cell provides boost switch both to turn on with zero voltage transition (ZVT) and to turn off with zero current transition (ZCT). As the switching losses in the proposed converter are too low, L and C size can be reduced by increasing the operating frequency. Also, all the semiconductor devices operate with soft switching. There is no additional voltage stress in the boost switch and diode. The proposed converter has a simple structure, low cost and ease of control as well. It has a simple control loop to achieve near unity power factor with the aid of the UC3854. In this study, detailed steady state analysis of the proposed converter is presented and this theoretical analysis is verified by a prototype of 100 kHz and 500 W converter. The measured power factor and efficiency are 0.99 and 97.9% at full load.

Torque Ripple Reduction Scheme of Single-Phase SRM with High Power Factor (고역률형 단상 SRM의 토크리플 저감방식)

  • Lee, Zhen-Guo;Liang, Jianing;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.122-125
    • /
    • 2005
  • A novel torque ripple reduction scheme of single-phase SRM with high power factor is presented. The proposed SRM drive has one additional active switches in the conventional asymmetric inverter. In order to get a higher power factor, the source current is controlled sinusoidal, And additional excitation current is added from charge capacitor due to torque ripple reduction. The switching period of source and charged voltage is controlled properly to get unity power factor and torque ripple reduction. The characteristics and validity of the proposed scheme is discussed with some simulation results.

  • PDF

A Study on Space Vector Modulation Method to Improve Input Power Factor of Matrix Converter (매트릭스 컨버터의 입력 역률 향상을 위한 공간벡터변조기법에 관한 연구)

  • Nguyen, Hoang M.;Lee, Hong-Hee;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.476-486
    • /
    • 2008
  • It is very important to design the input filter optimally in matrix converters. But, the input power factor is deteriorated in spite of the optimal filter design due to the existence of inductor and capacitor included in the filter, and it is hard to keep high power factor in the whole operating range which is one of the major advantages of the matrix converters because the power factor is changed according to the output frequency and the load current. In this paper, we introduce the new space vector modulation method which can preserve the input power factor almost unity even though the output load or the output frequency is varied. It is also presented how to implement the proposed method effectively.

Power Factor Characteristic of DFIG (DFIG의 역률특성)

  • Kim, Chul-Ho;Lee, Woo-Suk;Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.613-615
    • /
    • 2002
  • This paper deals with power factor of doubly fed induction generator for wind power generation in range of sub- and super-synchronous speed. To supply active and reactive power to grid. stator is connected to grid directly and rotor is connected to back-to-back PWM inverter for excitation. According to excitation level. DFIG could operate at the different mode. i.e., unity, leading, and lagging power factor.

  • PDF

Torque Ripple Reduction Drive of Single-Phase SRM with High Power Factor (단상 SRM의 토크리플 저감을 고려한 고역률 구동)

  • Kim B.C.;Park S.J.;Ahn J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.481-484
    • /
    • 2003
  • A strategy for a torque ripple reduction drive of single-phase SRM with high power factor is proposed. The drive for switched reluctance motor (SRM) is presented to achieve sinusoidal, near unity power factor input current with low torque ripple. The proposed SRM drive has no additional active switch. And a single-stage approach, which combines a DC link capacitor used as dc source and a drive used for driving the motor into one power stage, has a simple structure and low cost. The characteristics and validity of the proposed circuit is discussed in depth through the experimental results.

  • PDF

Torque Ripple Reduction Drive of Single-Phase SRM with High Power Factor (고역률 저토크 단상 SRM)

  • Kim Bong-Chul;Park Sung-Jun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.959-962
    • /
    • 2004
  • A strategy for a torque ripple reduction drive of single-phase SRM with high power factor is proposed. The drive for switched reluctance motor (SRM) is presented to achieve sinusoidal, near unity power factor input current with low torque ripple. The proposed SRM drive has no additional active switch. And a single-stage approach, which combines a DC link capacitor used as do source and a drive used for driving the motor into one power stage, has a simple structure and low cost. The characteristics and validity of the proposed circuit is discussed in depth through the experimental results.

  • PDF