• Title/Summary/Keyword: unit weight of soils

Search Result 98, Processing Time 0.021 seconds

A Study on the Volumetric Change of Sewage Dredged Soils (하수준설토의 체적변화에 관한 연구)

  • Lee, Song;Lee, Moo-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1167-1174
    • /
    • 2005
  • This paper describes on the volume change of Sewage Dredged Soils by using laboratory test and volumetric change test. The tremendous change of Moisture Content occured in the Sewage Dredged Soils during the Elapsed Time. The Unit Weight increases during the normally shrinkage limit void ratio and then the unit weight decrease. A volume of Sewage Dredged Soils according to the moisture content is a difference maximum 2.5 times. And there is the difference 3.5 times according to the change of unit weight. Therefore, the moisture content and unit weight computation are very important for the computation on the volume of Sewage Drdeged Soils.

  • PDF

Experimental Study on Compaction Effect of Hydraulic Fill Soils (실내실험을 통한 수중 매립토의 다짐효과 분석)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Chang, Woong-Hee;Bong, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.301-310
    • /
    • 2006
  • A series of laboratory tests was carried out for analyzing compaction characteristics of hydraulic fill soils(or hydraulically filled soils). Hydraulic fill soils were settled down by the weight of soil particle itself in water and consolidated by the extraction of water from the soil structures. Water content and dry unit weight were observed as the depth of sedimentation and consolidation soil. It was found from the result that the optimum water content $(W_{cpt})$ of the maximum unit weight$(\gamma_{dmax})$ is higher than that of laboratory compaction test(KS F 2312 A method). It was due to difference in compaction energy and compaction effect between two methods. And the maximum dry unit of hydraulic fill soil is smaller than that of laboratory compaction test. Especially in terms of compaction effect, the maximum relative compaction degrees$(R_{cmax})$ of Seamangum dredged sand, river sand and mixed sand, half and half of dredged and river sands, were 85%, 91% and 86%, respectively. It means that the compaction effect can be $85\sim91%$ of the maximum unit weight in laboratory compaction test.

  • PDF

Effects of Water Content and Dry Unit Weight on Deformational Characteristics of Subgrade Soils (노상토의 변형특성에 대한 함수비 및 건조단위중량의 영향)

  • Kweon Gi-Chul;Oh Myeng-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.87-93
    • /
    • 2006
  • To evaluate the deformational characteristics of subgrade soils, four subgrade samples in Korea were tested using the RC and TS tests with various dry unit weight and water content. Both the maximum modulus and normalized modulus reduction curves of subgrade soils were affected by the dry unit weight. The normalized modulus was decreased about 20% with increasing of relative compaction of 5%. It was founded that the variations of modulus of subgrade soils in Korea were over 40% with water content variation of $\pm$2%, and those effects can be estimated by exponential model. However, the normalized modulus reduction curves were almost identical and independent of water content. It was also founded that confining pressure, loading frequency, dry unit weight, and water content have an affect on modulus of subgrade soils independently. Therefore, it can be considered that those effects are independent variables.

  • PDF

Electrical Resistivity Variations of Contaminated Soils (오염토양의 전기 비저항치 변화 연구)

  • 윤길림;이용길
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.84-89
    • /
    • 2000
  • Parametric studies based on laboratory pilot tests were performed to investigate the relationships between electrical resistivity and contaminated soil properties. Three kinds of sandy soils sampled and leachates from a industrial waste landfill were mixed to model the contaminated soils. Electrical resistivity of soils were measured by using a simulated resistivity cone penetrometer probe. In the experiments, the electrical resistivity were observed with changing the water content, void ratio, unit weight, degree of saturation, and concentration of the leachate. The test results show that the electrical resistivity of soils depends largely on the water content and the electrical property of pore water rather than unit weight and types of soils.

  • PDF

Prediction of Maximum Dry Unit Weight of Sandy Soils From Grain-Size Distribution Parameters (입도분포계수를 이용한 사질토의 최대건조단위중량 예측)

  • Song, Young-Woo;Jin, Myung-Sub;Hong, Ki-Nam
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.55-64
    • /
    • 2004
  • Maximum dry unit weight, ${\gamma}_{dmax}$, is the most important engineering properties for subgrade soil. Existing models to predict ${\gamma}_{dmax}$ containing many parameters, seem to be rather complex. This paper presents new simple models to predict ${\gamma}_{dmax}$. for sandy soils, A number of sieve analysis and compaction tests for 36 types of sands were conducted to develop the regression-based models. Parameters used to estimate ${\gamma}_{dmax}$ are both the geometric mean and geometric standard deviation of the soils, or the particle-size distribution curve parameters. Maximum dry unit weights predicted by the models are in good agreement with the laboratory measurements for the soil samples obtained at 16 locations within the Korea.

  • PDF

A Study on the Correlation between Electrical Resistivity and Properties of Contaminated Soils (오염지반의 전기비저항치와 토성과의 상관성 연구)

  • 윤길림;이영남
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.79-92
    • /
    • 1998
  • Parametric studies based on laboratory pilot tests were performed to investigate the relationships between electrical resistivity and properties of contaminated soils. Three kinds of sandy soils sampled and leachate from an industrial waste landfill were mired to model the contaminated soils. Electrical resistivity of soils was measured by using a simulated resistivity cone penetrometer probe. In the experiments. the electrical resistivity was observed by changing the water content, void ratio, unit weight, degree of saturation, and concentration of the leachate. The test results show that the electrical resistivity of soils depends largely on the water content and the electrical property of pore water rather than unit weight and types of soils.

  • PDF

Characteristics Analysis of Mudstone Weathered Soils in the landslide Area using Statistical Technique (통계기법에 의한 산사태발생지역 이암 풍화토층의 토질특성 분석)

  • Hwang, Eui-Soon;Chung, Dae-Seouk;Kim, Kyeong-Su;Lee, Moon-Se;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.31-41
    • /
    • 2013
  • In this study, the properties of mudstone weathered soils related to landslides were analyzed at the area of landslide induced by heavy rainfall in Pohang. The soil tests were carried out to the soils obtained from landslide and non landslide sites, and the soil properties were investigated. The correlation between soil properties and landslides were analyzed using statistical technique, and then the soil factors were extracted from the correlation analysis. The correlation equation which can calculate the coefficient of permeability influenced on landslides was proposed using the soil factors. As the result of analysis, the porosity and unit weight of soils from the landslide area is smaller than those of soils from the non landslide area. The soils with poor grain size distribution and loose unit weight are prone to landslides because the soils have a large void ratio and a low unit weight. The permeability of soils from the landslide area is larger than that of soils from the non landslide area. According to the result of correlation analysis, the effective grain size, the saturated unit weight and silt and clay contents are evaluated as the influence factors. These factors were considered to estimate the coefficient of permeability of mudstone weathered soils.

Collapse mechanism for deep tunnel subjected to seepage force in layered soils

  • Yang, X.L.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.741-756
    • /
    • 2015
  • The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.

Shear Strength and Deformation Characteristics of Lightweight Soils Mixed with Tire Powder (타이어 가루를 섞은 경량혼합토의 전단강도와 변형특성)

  • Yoon, Gil Lim;Yoon, Yeo Won;Ahn, Kwang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.259-265
    • /
    • 2012
  • This paper investigates engineering characteristics of lightweight soils mixed with air foam and tire powder. Lightweight soils could be used as foundation materials, back-fills of reducing vibrating or abutment, and so on. Unconfined and triaxial compression tests were carried out to analyze strength and deformation characteristics of lightweight soils by changing target moist unit weight and cement contents. In comparison with strength characteristics of two different kinds of lightweight soils with same most unit weights ($13kN/m^3$), unconfined compression tests showed similar compressive strength, however, triaxial compression tests showed that compressive strength of lightweight soils mixed with waste tire powder was relatively larger strength than that of lightweight soils mixed with air foam because of elasticity of waste tire powder. Also, unconfined and triaxial compressive strengths of most of lightweight soils increase with increases of moist unit weight and cement contents. However, the strength of lightweight soils mixed with air foam under $11kN/m^3$, when moist unit weight exceeds a certain cement contents, decreases even though cement contents increase because of the effect in a void gap of air foam.

A Study on the Mechanical Characteristic and Shear Strength haracteristic on Elapsed Time of the Western Sea Dredged Soils (서해안 준설토의 역학적 특성 및 시간경과에 따른 강도 특성에 관한 연구)

  • Kim, Hongtaek;Han, Yeonjin;Yu, Wandong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.31-41
    • /
    • 2013
  • The dredged soils of western sea of Korea have been used as the fill materials because it possess the characteristics that constitute silt, silty sand and sand mainly. However, a study on dredged soils as the fill materials is insufficient. Hence, in this present study, the application the dredged soils of western sea of Korea as the fill materials was confirmed. Primary, the composition characteristics of the ground was analyzed to confirm the application on dredged soils as the fill materials by the piezo-cone penetration test. In laboratory test, it was performed the self-weight consolidation test for mechanical characteristics of the dredged soils. The direct shear test using self-weight consolidation test sample for shear strength characteristics was performed after self-weight consolidation test. Additionally, the mechanical characteristics of the dredged soils on elapsed time using self-weight consolidation test sample, which is drained naturally, was evaluated. The dredged soils of western sea of Korea show that unit weight and shear strength is increased as natural drain time elapses.