• 제목/요약/키워드: unit weight of concrete

Search Result 338, Processing Time 0.028 seconds

A Basic Study of Automatic Rebar Length Estimate Algorithm of Bearing Wall by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 내력벽 철근길이 자동 산정 기초 연구)

  • Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.79-80
    • /
    • 2023
  • Reinforced concrete structures require large amounts of concrete and rebar in the construction stage. Rebar is a major resource for reinforced concrete structures, and generates more CO2 per unit weight than other materials. To solve this problem, it was confirmed that the cutting waste can be close to zero when the special length of the rebar is calculated in the drawing created after structural design. However, a system for automatically calculating the length of reinforcing bars to efficiently calculate the total amount of reinforcing bars has not been established. Therefore, the objective of this study is a basic study of automatic rebar length estimate algorithm of bearing wall by using BIM-based shape codes built in Revit. The bearing wall rebar can be automatically derived using the developed model. Furthermore, through applying the developed model to the construction field, it will greatly contribute to reducing greenhouse gas emissions by reducing rebar cutting waste.

  • PDF

High Ductile Fiber Reinforced Concrete with Micro Fibers (마이크로 섬유를 혼입한 고인성 섬유 보강 콘크리트)

  • Shin, Kyung-Joon;Lee, Seong-Cheol;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • In general, high strength and high performance fiber reinforced cement composites exclude coarse aggregates basically in order to have homogeneous distributions of material properties. However, these fiber-reinforced cement mortar without coarse aggregate have a tenancy that the modulus of elasticity is low and the unit weight of cement is high, resulting in low economic efficiency. Therefore, in this study, the development of high ductile fiber - reinforced concrete was conducted, which has the adequate level of coarse aggregate but still retains the high flexural toughness and strength and also has the crack - distributing performance. Experimental study was carried out by using the amount of coarse aggregate as an experimental parameter. The results showed that the best flexural toughness and crack dispersion characteristics was obtained when the coarse aggregate was added at 25% by weight of the fine aggregate to the typical mixtures of high ductile cement mortar. PVA fiber was effective in crack distribution and ductility enhancement, and steel fiber was effective in strengthening flexural strength rather than crack distribution.

Experimental Study on Mechanical Properties of Carbon-Capturing Concrete Composed of Blast Furnace Slag with Changes in Cement Content and Exposure (고로슬래그 기반 탄소흡수용 콘크리트의 시멘트 첨가율 및 노출조건에 따른 역학적 특성 분석을 위한 실험적 연구)

  • Cho, Hyun Myung;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.41-51
    • /
    • 2015
  • PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high $N_2$ and $O_2$ concentrations, laboratory conditions and high $CO_2$ conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high $CO_2$. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.

Durability of Concrete Using Insulation Performance Improvement Materials (단열성능 향상 재료를 사용한 콘크리트의 내구성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kim, Se-Hwan;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, we tested to develop and apply structural insulation performance improvement concrete to field, which had compressive strength in 24 MPa and thermal conductivity twice as much as normal concrete. After experiment about slump and air contents, combination product of Plain and calcined diatomite powder showed reduction of slump and air contents and combination product with micro foam cell admixture, we cannot find result of slump and air contents reduction. Unit weight of combination product with insulation performance improvement materials decreased more than that of Plain. In the test of compressive strength, compressive strength of insulation performance improvement concrete decreased more than that of Plain but was content with 24 MPa. thermal conductivity of insulation performance improvement concrete tended to decrease. Freezing and thawing resistance of insulation performance improvement concrete was similar to that of Plain. In carbonation resistance test, combination product with calcined diatomite powder showed the result which was similar to that of Plain. In carbonation resistance test, combination product with micro foam cell admixture showed a increase compared to that of Plain and length variation of combination product generally increased.

An Experimental Study on the Properties of Concrete with Regional Fine Aggregate Properties and Modulation of Fine Aggregate Ratio (지역별 잔골재특성 및 잔골재율 조정에 의한 콘크리트 특성에 관한 실험적 연구)

  • Yoo, Seung-Yeup;Lee, Sang-Rae;Lee, Bum-Suck;Song, Yong-Soon;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.465-468
    • /
    • 2008
  • This study investigated the best condition when mixed sand with a river and crushed sand was used though the experiment for the properties of the concrete corresponding to the control of fine aggregate ratio to apply the mixed sand and properties of the fine aggregate at the ready-mixed concrete factory on Yeongnam and Honam. The physical properties of Yeongnam and Honam is satisfied with KS F 2526 and KS F 2527 except fineness modulus and passing amount of 8mm sieve. And, the mixed sand above two types which were incongruent to use individually was being used at each factory, and it was managed in accordance with KS. The flowabillity of the mixture proportion of concrete which was estimated by method of unit volume weight according to the fine aggregate ratio at each factory on Yeongnam and Honam was higher than existing mixture proportion. It was analyzed that the residual water due to decline of the surface area caused by reducing fine aggregate ratio was increased relatively. Accordingly, it was considered that the effect on the economic mixture proportion and improvement of durability might be possible.

  • PDF

Engineering Properties of Permeable Polymer Concrete (투수성(透水性) 폴리머 콘크리트의 공학적(工學的) 특성(特性))

  • Sung, Chan Yong;Min, Jeong Ki;Kim, Kyung Tae;Jung, Hyun Jung;Han, Young Kyu;Lee, Jeon Sung;Nam, Ki Sung
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.56-60
    • /
    • 1999
  • This study is performed to evaluate the engineering properties of permeable polymer concrete. The following conclusions are drawn. 1. The unit weight is $1,883kgf/m^3$, which is decreased 18% than that of the normal cement concrete. 2. The strength of permeable polymer concrete is achieved that it is 170% by tensile strength and 240% by bending strength than that of the normal cement concrete, respectively. 3. The water permeability is $5.917l/cm^2/h$. This concrete can be used to the structures which need water permeability.

  • PDF

The effects of replacement fly ash with diatomite in geopolymer mortar

  • Sinsiri, Theerawat;Phoo-ngernkham, Tanakorn;Sata, Vanchai;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.427-437
    • /
    • 2012
  • This article presents the effect of replacement fly ash (FA) with diatomite (DE) on the properties of geopolymer mortars. DE was used to partially replace FA at the levels of 0, 60, 80 and 100% by weight of binder. Sodium silicate ($Na_2SiO_3$) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture in order to activate the geopolymerization. The NaOH concentrations of 15M, $Na_2SiO_3$/NaOH ratios of 1.5 by weight, and the alkaline liquid/binder (LB) ratios by weight of 0.40, 0.50, 0.60 and 0.70 were used. The curing at temperature of $75^{\circ}C$ for 24 h was used to accelerate the geopolymerization. The flows of all fresh geopolymer mortars were tested. The compressive strengths and the stress-strain characteristics of the mortar at the age of 7 days, and the unit weights were also tested. The results revealed that the use of DE to replace part of FA as source material in making geopolymer mortars resulted in the increased in the workability, and strain capacity of mortar specimens and in the reductions in the unit weights and compressive strengths. The strain capacity of the mortar increased from 0.0028 to 0.0150 with the increase in the DE replacement levels from 0 to 100%. The mixes with 15M NaOH, $Na_2SiO_3$/NaOH of 1.5, LB ratio of 0.50, and using $75^{\circ}C$ curing temperature showed 7 days compressive strengths 22.0-81.0 MPa which are in the range of normal to high strength mortars.

Evaluation on Flexural Performance for Light-Weight Composite Floor with Sound Reduction System (층간소음 대응형 경량합성바닥판에 대한 휨성능 평가)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung;Heo, Byung Wook;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.241-250
    • /
    • 2014
  • The purpose of this study is to propose structural technologies on the light-weight composite floor systems in the unit modular and to evaluate structural performance of the composite floor through flexural experiments. The flexural experiments were carried out on total nine specimens(each three type in shape) using steel flat deck and truss deck. From the results of test, all specimens showed the same failure patterns which exhibited deflection at the center of the specimens due to flexural deformation before concrete crushing at the upper of specimens. Also, we know that the proposed floors satisfied in serviceability and would be safe sufficiently. The ratio of experimental yield load by theoretical nominal load was the distribution of 0.86 to 1.27 with an average 1.04. Coefficient of variation in distribution showed good agreement.

A Study on the Properties of the Concrete Containing Fly-ash of Class F According to the 3 Different Mixture Design (F급 플라이애쉬의 혼입방법을 달리한 콘크리트 특성에 관한 실험적 연구)

  • Moon, Jong-Wook;Yoo, Taek-Dong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • The purpose of this study is investigating characteristics of the concrete containing Fly-ash according to different 4 mix design, that is, the first mix design is partial replace Fly-ash of cement, second is partial replace Fly-ash of cement and fine aggregate, third is partial replace Fly-ash of fine aggregate, fourth partial replacement of fine and coarse aggregate. For this purpose, selected test variables were water-binder ratio with two levels of 45%, 50%, and Fly-ash contents with four levels 0%, 10%, 20%, 30%, As the result of this study are as follow. 1) The result of mix design of a partial replacement of cement, the slump-flow value was appeared a promotive effect of viscosity. But in case of the over with Fly-ash 10% and the other mix design was not changed slump value. 2) The unit weight of the mixing rate with Fly-ash 0% was $1.875{\sim}1.884t/m^3$, the other mix design 10% over with Fly-ash was $1.846{\sim}1.615t/m^3$, the difference was appeared less about 15% than that. 3) In design, partial replace Fly-ash of fine aggregate, this compressive strength was appeared that the concrete age after 7 days was higher than in partial replacement of cement, therefore, the default of a concrete with Fly-ash, that is the earlier compressive strength was to lessen, was improved. 4) The thermal conductivity of the all mix design was $0.447{\sim}1.144kcal/mh^{\circ}C$, this value was as good as a lightweight aggregate concrete.

  • PDF

An Experimental Study on the Properties of Strength for Lightweight Concrete of Coated Scoria Lightweight Aggregate (피복 화산암재를 이용한 경량콘크리트의 강도특성에 관한 실험적연구)

  • 이시우;서치호
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.61-68
    • /
    • 1990
  • This experimental study is aimed to investigate the coating method of scoria lightweight aggregate for reo duction of water absorption and the physical dynamic characteristics of coated-scoria jightweight aggregate con¬crete. The coating methods are as follows: I) Non-coating method. II) Coating method of only cement paste. rn) Coating mehtod of surface-coating agent after coating by cement paste. IV) Coating method of only surfaee-coating agent. V) Coating method of cement pasted after coating by surface-coating agent. The summerized conclusion are as fallows ; 1) Specific gravity and the rate of water absorption were lowest when aggregate was covered by only surface-coating agent, especially, rate of absorption was about 10% of non-coating aggregate. 2) Coated-aggregate were about 0.87~0.97t/m3 and lightweight concrete made of coated-aggre¬gates were 1.80~ 1.94 t/m3 in unit weight. 3) Compressive strength of the lightweight concrete made of cement pasted-coating aggregate was about 200~215kg/crrl. 4) The higher the rate of water absorption of coarse aggregate, the higher the rate of deterioration of compressive strength.